Learning complex manipulation tasks by playing.

Problem
- Starting from a random initialisation, learn to perform manipulation tasks on the Human Support Robot (HSR).
- We formulate it as a reinforcement learning (RL) problem with sparse reward.

Simulation Environment
- We create an OpenAI Gym environment based on Gazebo (a physics engine, 3D modeling and rendering tool) and ROS (software frameworks to interact with the robot) [3].

Scheduled Auxiliary Control
- Code: https://github.com/ascane/sacq-hsr

Key idea
- High-level scheduling of auxiliary tasks and the execution of auxiliary policies to explore efficiently ([1]).

Learning the policy (Actor \(\theta \))
- The action-value function \(Q_T(s_t, a_t) \) for task \(T \)
 \[
 Q_T(s_t, a_t) = r_T(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}} \left[\gamma^r r_T(s_{t+1}, a_{t+1}) \right]
 \]
 where \(T \in A \cup \{M\} \), \(\pi_T = \pi_0(a|x, T) \).
- To learn the parameters, we optimise
 \[
 \mathcal{L}(\theta) = \mathcal{L}(\theta; A) + \sum_{k=1}^{|A|} \mathcal{L}(\theta; A_k)
 \]
 with \(\mathcal{L}(\theta; T) = \sum_{s,T\in\mathcal{R}(T)} \mathbb{E}_{s\sim\pi}(Q_T(s,a) | a \sim \pi_0(|s, T]) \).

Learning the Q-function (Critic \(\phi \))
- Since the policy parameters are constantly being updated, the trajectories are generated by different behaviour policies.
- The off-policy evaluation Retrace [2] is used to optimise the estimator \(Q^*_T(s, a; \phi) \).

Learning the scheduler
- To determine the current intention of the agent based on previous intentions.
 \[
 R_M(T_0, T_{-1}) = \sum_{k=1}^{|A|} \sum_{l=1}^{\mathcal{M}-1} \gamma^r \pi_M(s_0, a_0) \]
 \[
 \pi_S(a_0|s_0, T_0, T_{-1}) = \sum_{s, T} \pi(a_0|s_0, T) P_0(T|T_0, T_{-1})
 \]
 \[
 \mathcal{L}(S) = \mathbb{E}_{s_0} \left[R_M(T_0, T_{-1}|T_0 \sim P_0(T|T_0, T_{-1})) \right]
 \]

Experiments

Stacking two boxes
- Stack the green box on top of the red one
- Three auxiliary task with sparse reward – Reach, Move, Lift.

Siemens Assembly Challenge
- Assemble different components to the end configuration as shown in Fig. 4.

Why is it challenging?
- Gazebo is too slow for RL algorithms.
- Hard to design auxiliary tasks for more complex tasks.

Figures
- Fig. 1: Schematic of an actor-critic agent.
- Fig. 3: Stacking boxes and the assembly challenge in simulation.
- Fig. 4: The desired end configuration of the Siemens assembly challenge. Credits: Siemens Corporate Technology.
- Fig. 5: HSR falls over / reaches forward too much / gets stuck under the table / runs away from the table.

References