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Abstract

We investigate autonomous assembly from a random initiation on Human Support
Robot (HSR), with the aim of solving the Siemens Assembly Challenge. We
formulate it as a Reinforcement Learning (RL) problem with sparse reward. A new
learning paradigm, Scheduled Auxiliary Control (SAC), excels at sparse reward
RL and appears to be a great fit to our problem. The key idea behind SAC is the
high-level scheduling of auxiliary tasks and the execution of auxiliary policies to
explore efficiently. We experiment in ROS-based Gazebo simulated environments
built on top of the OpenAI Gym, with the potential of being extended to learn the
same tasks on a real robot from scratch.

1 Introduction

A recent trend in manufacturing is shaping the future of industry towards small production volume
and high product variability (Lasi et al., 2014), motivating a high degree of automation in flexible
environments. To date, robots used in assembly tasks often operate in tightly controlled environments;
initial conditions are predefined, parts are sorted and fed in a fixed manner, and guides are used for
assuring the consistent behaviour of such repetitive tasks. Robots with predefined behaviours under
human control can perform impressive tasks. However, designing the controller for autonomous
operations remains a major challenge, even for basic tasks such as grasping objects.

Robotic assembly typically involves object manipulation tasks with contact and friction, such as
inserting and squeezing tight-fitting objects, which are particularly hard for analytical models –
a requirement for robotic systems with limited sensing. For current robots with access to a rich
sensory stream, an infamous difficulty towards autonomous manipulation still lies in dealing with the
inevitable uncertainty and noise in the sensory-motor system and the environment.

Over the past few years, a couple of approaches have been developed to tackle robotic manipulation
problems, including associative skill memories (ASM) (Pastor et al., 2012) (Kappler et al., 2015) and
deep reinforcement learning (DRL) (Levine et al., 2015) (Levine et al., 2016) (Tamar et al., 2017).

In the context of Reinforcement Learning (RL) in robotic manipulation applications, a natural
problem of exploration occurs. Typically, an agent has to discover a long sequence of actions to find
a configuration – assemble a whole set of components in a specific configuration – that yields the
sparse reward. A multitude of methods have been proposed to cope with this problem, but they all
rely on the availability of prior knowledge that is specific to the task. Scheduled Auxiliary Control
(SAC) (Riedmiller et al., 2018) supports the agent during learining, but preserves the ability of the
agent to learn from sparse rewards. Moreover, it has been applied to robotic manipulation tasks –
stacking various objects and cleaning a table – with demonstrated success.

In this work, we extend the OpenAI Gym (Brockman et al., 2016) for robotics using the Robot
Operating System (ROS) (Quigley et al., 2009) and the Gazebo simulator (Koenig and Howard, 2006)
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(Zamora et al., 2016) to create simulated environments for the Toyota Human Support Robot (HSR)1.
We summarise and apply the sequential version of Scheduled Auxiliary Control (SAC-Q), a new
learning paradigm that enables learning of complex behaviours, in the presence of multiple sparse
reward signals. We experiment with a simple task of stacking two boxes, with the aim of performing
autonomous assembly of a whole set of gears in the Siemens challenge2.

2 Related Work

Research on autonomous assembly has been ongoing for a few decades. Early works (De Mello and
Sanderson, 1991) (Halperin et al., 2000) focus on planning a sequence of assembly steps or motions
based on the geometry of different components. More recent work on automated furniture assembly
system (Knepper et al., 2013) relies on user-supplied geometric specification and reasoning about
the individual parts to deduce how they fit together. (Heger, 2010) examines more realistic scenarios
and explores error detection and recovery strategies when assembly plans fail. These traditional
methods cannot learn to perform autonomous assembly from scratch when the geometry specification
is unknown.

One of the key ideas behind SAC – the use of auxiliary tasks in the context of RL to overcome
sparse rewards – has been explored in the literature. Among the pioneers of this idea, the Horde
architecture (Sutton et al., 2011) applies reinforcement learning to identify value functions for distinct
pseudo-rewards and each value function is trained separately using distinct weights. It is further
generalised by the Universal Value Function Approximators (UVFA) architecture (Schaul et al.,
2015), a factored representation of a continuous set of optimal value functions, combining features of
the state with an embedding of the pseudo-reward function. Recent work on Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017) samples additional goals from previous trajectories and
uses them as auxiliary tasks.

HER and SAC may be seen as an implicit form of curriculum learning, first introduced by Bengio
et al. (2009). The main concept behind curriculum learning is that humans and animals learn much
better when the examples are not randomly presented but organised in a meaningful order. Heess
et al. (2017) combine this idea with RL on complex locomotion tasks. Similarly, divide-and-conquer
RL (Ghosh et al., 2017) separates complex tasks into a set of local tasks, each of which can be
used to learn a separate policy, and demonstrates their method on a set of robotic manipulation
and locomotion tasks in simulated environments. Intrinsically motivated goal exploration processes
(Forestier et al., 2017) automatically generate a learning curriculum by generating, selecting goals
based on intrinsic rewards and reusing information systematically to improve goals. This method has
been evaluated with a real robotic setup, which provides real world constraints that are not available
in simulations.

Besides curriculum learning, other approaches of deep RL have been proposed to solve robotic
manipulation tasks. Examples include guided policy search (Levine et al., 2015), (Levine et al., 2016)
and using model predictive control to generate hindsight plan and replanning at each time step (Tamar
et al., 2017). All three papers have conducted experiments in real environments using a real PR2
robot.

Perhaps the closest to our tasks is the recent work on Learning Robotic Assembly from CAD (Thomas
et al., 2018). They attempt the same Siemens challenge of autonomous assembly using a PR2 robot.
Their main idea is to leverage the prior knowledge of the geometry specification specified in the CAD
design files. In addition, they propose a neural network architecture that can learn to track the motion
plan, thereby generalising the assembly controller to changes in the object positions.

3 Background

We model the problem of reinforcement learning in a Markov Decision Process (χ,A, γ, p, r). χ is
the state space, A the action space, γ ∈ [0, 1) the discount factor, p the transition function mapping
state-action pairs (s, a) ∈ χ×A to distributions over χ, and r : (s, a) ∈ χ×A → R is the reward
function. Actions are sampled from a policy distribution π mapping from χ to distributions over A.

1https://www.toyota-global.com/innovation/partner_robot/robot/#link02
2https://www.siemens.com/us/en/home/company/fairs-events/robot-learning.html
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The goal of reinforcement learning is to maximise the sum of discounted rewards Eπ[R(τ0:∞)] =
Eπ[

∑∞
t=0 γ

tr(st, at)|at ∼ π(·|st), st+1 ∼ p(·|st, at), s0 ∼ p(s)], where p(s) denotes the initial
state distribution or the state visitation distribution. We denote with τt:∞ = (st, at), ... the trajectory
starting at time t in state st.

Policy Gradient Methods Many classical RL methods are action-value methods; they learn the
value of actions and then select actions based on their estimated action values. In policy gradient
methods, we consider methods that learn a parameterised policy that can select actions without
consulting a value function. They use feedback from the environment directly to optimise the policy.
Monte Carlo returns are often used, but one drawback is that they introduce high variance.

Actor-Critic Methods To solve the problem of high variance for policy learning, a natural extension
consists of learning a parameterised policy and a parameterised value function. They are called the
actor and the critic respectively. The actor learns a policy and updates its parameters in a direction
suggested by the critic, while the critic evaluates the policy using policy evaluation methods. Through
bootstrapping (updating the value estimate for a state from the estimated values of subsequent states),
we introduce bias and asymptotic dependence on the quality of the function approximation. The bias
introduced here is beneficial as it usually reduces variance and accelerates learning.

4 Scheduled Auxiliary Control

We now summarise the method Scheduled Auxiliary Control (Riedmiller et al., 2018) for RL in
sparse reward problems.

It is a variation of actor-critic methods with the actor parameterised by θ and the critic by φ. The
sparse reward problem is defined as finding the optimal policy in an MDPM. To enable learning, a
set of auxiliary tasks are used, characterised by a set of auxiliary MDPs A = {A1, ...,AK}. These
auxiliary MDPs share the state space, the action space and the transition dynamics with the main
MDPM, but have separate auxiliary reward functions rA1(s, a), ..., rAK (s, a).

Learning the Policy (Actor θ) The action-value function QT (st, at) for task T is defined as

QT (st, at) = rT (st, at) + γEπT

[ ∞∑
t′=t+1

γt
′
rT (st′ , at′)

]
, (1)

where T ∈ A ∪ {M}, πT = πθ(a|x, T ).

To learn the parameters, we optimise

L(θ) = L(θ;M) +

|A|∑
k=1

L(θ;Ak), (2)

with L(θ; T ) =
∑
B∈A∪{M} Ep(s|B) [QT (s, a)|a ∼ πθ(·|s, T )] .

The QT (s, a) values are obtained using a parameterised predictor Q̂πT (s, a;φ). Using this predictor
together with a replay buffer B containing gathered trajectories τ , a gradient based approach can be
taken.

OθL(θ) ≈
∑

T ∈A∪{M},τ∼B

OθEπθ(·|st,T ),st∈τ

[
Q̂πT (st, a;φ) + α log πθ(a|st, T )

]
, (3)

where OθEπθ(·|st,T ),st∈τ [log πθ(a|st, T )] corresponds to entropy regularization with weighting
factor α.

Learning the Q-function (Critic φ) Since the policy parameter is constantly being updated, the
trajectories are generated by different behaviour policies. The off-policy evaluation Retrace (Munos
et al., 2016) is used to optimise the estimator Q̂πT (s, a;φ).
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Learning the Scheduler The scheduler is used to determine the current intention of the agent
based on previous intentions. Denote ξ by the period at which the scheduler switches tasks, H the
total number of possible tasks and T0:H−1 = {T0, ..., TH−1} the H scheduling choices made within
an episode. The return of the main task is then defined as

RM(T0:H−1) =

H∑
h=0

(h+1)ξ−1∑
t=hξ

γtrM(st, at), (4)

where at ∼ πθ(·|st, Th).

Denote the scheduling policy with PS(T |T0:h−1). The probability of an action at can be defined as

πS(at|st, T0:h−1) =
∑
T
πθ(at|st, T )PS(T |T0:h−1). (5)

Combining these two definitions from Equations 4 and 5, we optimise the objective below to learn
the scheduler

L(S) = EPS [RM(T0:H−1|Th ∼ PS(T |T0:h−1))] . (6)

The solution to Equation 6 can be approximated by the Boltzmann distribution

PS(Th|T1:h−1;η) =
exp(EPS [RM(Th:H)]/η)∑
T̄h:H exp(EPS [RM(T̄h:H)]/η)

, (7)

where η corresponds to the greediness of the schedule. The expectation of the return can be approxi-
mated by the Monte Carlo return using the last executed trajectories.

The actor and the critic are represented by two neural networks as in Appendix B additional model
details in the paper. The complete SAC-Q algorithm can be found in Appendix C in the paper.

5 Experiments

We perform experiments based on Human Support Robot (HSR)3 in simulation. Human Support
Robots are robots developed by Toyota that offer broad-based assistance in daily life. They are
designed for basic support such as picking up and carrying objects with potential applications in
nursing and healthcare.

5.1 Experimental Setup and Implementation Details

OpenAI Gym environments for HSR using ROS and Gazebo (link to source code4)

OpenAI Gym (Brockman et al., 2016) is a toolkit for developing and comparing reinforcement
learning algorithms that has recently gained popularity in the RL research community and become a
benchmark. To interface it, we define and overwrite a few functions, including step, reset, render,
close. Real-world operation is achieved combining Gazebo simulator (Koenig and Howard, 2006),
a physics engine, 3D modeling and rendering tool, with ROS (Quigley et al., 2009), a collection
of software frameworks for robot software development. As benchmarking in robotics remains an
unsolved issue, this integration (Zamora et al., 2016) provides a controlled environment with a real
robotic (HSR) API enabling fast experiments and development.

At the start and after every reset of the simulation, the robot is placed in a neutral configuration
facing the table. The objects (boxes or gears) are dropped at random positions on the table. The robot
can perform action steps to move in six directions – forward, backward, up, down, left, right – and
to open or close the gripper. Under the hood, these actions are implemented using the HSR library
hsrb_interface, which provides a wrapper around an inverse kinematics library. After every step,
three things are returned – an observation of the current state, a scalar reward of the main task and a
boolean indicating whether the episode is terminal. At the end of the simulation, we need to close the
environment to kill running processes.

3https://www.toyota-global.com/innovation/partner_robot/robot/#link02
4https://github.com/ascane/gym-gazebo-hsr
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Figure 1: Two HSR simulated environments in Gazebo. Left: Stacking two boxes. Right: Siemens
assembly challenge.

SAC-Q on HSR (link to source code5)

Multiple design choices have been made when implementing SAC-Q on HSR.

� Learning the Policy (Actor θ)
In Equation 3, the entropy regularisation term is supposed to be non negative by definition.
Therefore, we opt for the change of the sign before the weighting factor α and keep α non
negative. The equation for computing the gradient for the policy update becomes

OθL(θ) ≈
∑

T ∈A∪{M},τ∼B

OθEπθ(·|st,T ),st∈τ

[
Q̂πT (st, a;φ)− α log πθ(a|st, T )

]
. (8)

� Learning the Q-function (Critic φ)
In Equation (13) of the SAC paper (Riedmiller et al., 2018), from the second line, the i
is used but never defined. From our understanding, this value indicates the index of the
timestep in the trajectory from which the Q return is calculated. The paper does not specify
how this is chosen. In our implementation, 32 trajectories are randomly sampled from the
replay buffer and then a random i is chosen in that trajectory.
The off-policy evaluation formula in the SAC paper differs from the original Retrace paper
(Munos et al., 2016). In the SAC paper, δQ(si, sj) is defined as Eπ[Q(si, ·)] − Q(sj , aj)
while in the Retrace paper it is defined as Eπ[Q(sj+1, ·)]−Q(sj , aj). We follow the original
Retrace paper in our implementation.

� Learning the Scheduler
How to approximate the schedule returns in the SAC paper is unclear to us. In Equation
12 of the paper, it can be approximated from a Monte Carlo estimation of the expectation
using the last M = 50 trajectories, which differs from Algorithm 3 of the paper where M is
continuously increased as the task is visited more often. This causes the size of the gradient
to decrease, rendering it useless by the time any task has actually been learned. We adopt a
constant learning rate to replace 1

M instead.

5.2 Stacking Two Boxes

As something simple to start with, we consider the task of stacking the green box on top of the red
one. This requires the robot to perform the following actions sequentially – move close to the table to
be able to reach objects on it, grasp the green box placed at a random positon, lift it up to at least the
height of the red one and place it on top of it in a stable configuration. A screenshot of the simulation
is shown in Figure 1 on the left-hand side.

We design three auxiliary tasks with sparse rewards – Reach, Move, Lift. In the Reach task, we
receive a positive reward when the hand is close enough to the green box. In the Move task, a reward
is attributed based on the horizontal move of the green box. In the Lift task, only when the green box
is lifted higher than a certain threshold is a reward given.

5https://github.com/ascane/sacq-hsr
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The observation of the state is designed to be the left and the right images taken from the robot’s
head and the state of the joints. They are transformed into a vector when being fed into the neural
networks.

5.3 Siemens Assembly Challenge

Figure 2: The desired end configura-
tion of the Siemens assembly challenge.
Credits: Siemens Corporate Technology.

Researchers at Siemens Corporate Technology in Berke-
ley, CA, have developed a set of gears to test different
robot learning approaches to assembly6. There are seven
components and the goal is to assemble them in to the
end configuration as shown in Figure 2. Different from the
previous task, there is more than one possible sequence to
perform this task. To acheive this, the robot has to learn to
move close to the table, grab the gears and assemble them.
A screenshot of the simulation is shown in Figure 1 on the
right-hand side.

We design the auxiliary task to be grasping and lifting the
six components (except the ground base that stays on the
table), and moving the components close to each other.

The observation stays the same as in the previous task. One difficulty is to determine whether the
gears are assembled properly from the observation.

5.4 Challenges

At the time of writing, SAC has been run locally in the OpenAI Gym environments for HSR
successfully. However, it has not been trained to solve our tasks. Besides technical difficulties of
setting up a Docker container to train on a server with GPU, we have not been able to run Gazebo
simulator as fast as realtime, even without the rendering (gzclient). It takes around 10 minutes to
perform 100 actions locally. To run 10k episodes of 100 action steps each, a rough estimate suggests
it would take approximately 10 weeks just to perform the actions, which cannot be accelerated by the
use of a GPU.

6 Conclusion

Autonomous assembly remains a major challenge in robot learning. In this work, we extended the
OpenAI Gym for robotics using the Robot Operating System (ROS) and the Gazebo simulator to
create simulated environments for the Human Support Robot. We gave an overview and provided a
working implementation of the Scheduled Auxiliary Control algorithm. We applied it to solve the task
of stacking two boxes and the Siemens assembly challenge. Many algorithmic and technical problems
encountered along the way are solved. However, our current simulated environment needs a speed-up
to enable training in a reasonable amount of time. Experimenting in a ROS-based environment will
allow us to learn from scratch on a real robot in the future.
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