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Abstract

Multi-class classification is a classical problem in machine learn-
ing and much progress has been observed in the literature in recent
years. In this challenge, we experiment with various kernel methods
to perform image classification. This short report aims at summa-
rizing our approaches, focusing on feature extraction and classifica-
tion.

1. Introduction
In this data challenge on image classification, we are given 5000

classified images as training data and 2000 images as test data. Each
image is represented by a 32 (height) x 32 (width) x 3 (color) vector
of values between -1 and 1. There are 10 classes. The performance
is evaluated by the classification accuracy on the test data. A public
leader board is available and the score is calculated upon approxi-
mately 50% of the test data. The final results will be based on the
other 50%. The goal of this data challenge is to learn how to imple-
ment machine learning algorithms from scratch. For this reason, ex-
ternal machine learning libraries, as well as computer vision libraries
are forbidden.

2. Feature Extraction
2.1. Local feature descriptor

We first introduce three classical algorithms in computer vision to
detect and describe local features in images.

Histograms of Oriented Gradients (HOG) We follow the
method introduced in [2], which consists of dividing the image into
regions, for each region accumulating a local 1-D histogram of lo-
cal gradient directions over the pixels of the region. A histogram
corresponds to a local descriptor.

Scale-Invariant Feature Transform (SIFT) As described in [3],
this method is composed of the following steps. First we build a pyra-
mid of images convolved with Gaussian filters at different scales, and
then the differences of successive Gaussian-blurred images. Poten-
tial keypoints are taken from the local extrema of the difference-of-
Gaussians pyramid. Second, we adjust the keypoints to more accu-
rate positions by interpolation using the quadratic Taylor expansion
of the Difference-of-Gaussians function taking the candidate key-
points of the previous step as origins. At the same time, we discard
keypoints that are either unstable, low-contrast or on edges. Third,
we assign an orientation to each keypoint by computing a histogram
of oriented gradients in the neighboring pixels. The orientation of the

highest peak is assigned. If other peaks are within 80% of the high-
est peak, new keypoints at the same position with those orientations
will be created. Last, we build a local feature descriptor for each
keypoint by creating 4 histograms, taking the orientation of the pre-
vious step into account; each histogram is built upon the Gaussian-
weighted oriented gradients of neighboring pixels. By concatenating
4 histograms, we obtain a local feature descriptor.

Kernel descriptors As stated in [1], this method is based on the
insight that the inner product of the orientation histograms is a par-
ticular match kernel over image patches. We compute gradient and
color match kernels for images. The kernel view of orientation his-
tograms provides a simple and unified way to turn pixels into low-
level descriptors.

2.2. Global feature descriptor

Besides simply concatenating local feature descriptors, we list
two other ways below to construct a global feature descriptor to rep-
resent an image.

Bag of words We apply the K-means algorithm to cluster local
feature descriptors. We consider each cluster as a bag and each local
feature descriptor as a word. The number of words in each bag forms
a vector.

Fisher Vector The idea behind Fisher vector is to measure the sim-
ilarity between features using a Fisher kernel. Given a likelihood
function uλ with parameter λ, the score function of a given sample
X is given by

GXλ = ∇λ log uλ(X). (1)

The Fisher Information Matrix (FIM) is defined as

Fλ = Ex∼uλ
[
∇λ log uλ(x)∇λ log uλ(x)T

]
. (2)

The Fisher kernel is defined as

K(X,Y ) = (GXλ )TF−1
λ GYλ . (3)

As the FIM is positive semi-definite, it can be decomposed as F−1
λ =

LTλLλ. Then, the Fisher kernel can be rewritten as a dot product
between Fisher Vectors

GXλ = LλG
X
λ . (4)

To apply this to images, we consider X = {xt, t = 1..T} the set
of T i.i.d. D-dimensional local descriptors.

GXλ =
1

T
ΣTt=1∇λ log uλ(xt). (5)
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uλ(x) = ΣKi=1wiui(x) is a Gaussian Mixture Model (GMM) with
parameters λ = {wi, µi,Σi, i = 1..N} trained on a set of local
descriptors, which can be regarded as a probabilistic visual vocabu-
lary. We apply the K-means algorithm to initiate the centers in GMM
and then perform the Expectation-Maximization (EM) algorithm for
training.

Compared to the bag-of-words model, Fisher Vector contains
higher-order statistics, up to order 2. More theoretical and imple-
mentation details can be found in [5].

3. Classification

Once we represent the image by local or global feature descrip-
tors, we classify them using a classifier. In the case of Support Vector
Machine (SVM), it is combined with a kernel.

3.1. Classifiers

We have the choice of classifiers among cross entropy classi-
fier, a multi-class classifier with cross entropy loss, kernel SVM
one versus one classifier and kernel SVM one versus all classi-
fier. The kernel SVMs are built upon a kernel SVM binary classifier,
which solves the dual problem by applying the Sequential Minimal
Optimization (SMO) [4], an algorithm for solving the quadratic pro-
gramming problem that arises in the training of an SVM.

3.2. Kernels

Below is a list of kernels we use in kernel descriptors for feature
extraction, kernel SVMs for classification, or kernel PCA for dimen-
sion reduction.

• Linear kernel K(x, y) = xT y

• Gaussian kernel K(x, y) = exp(
−‖x−y‖22

2σ2 )

• Gaussian kernel for angle

K(x, y) = exp(
−(Σi(sinxi − sin yi)

2 + Σi(cosxi − cos yi)
2)

2σ2
)

• Histogram intersection kernel K(x, y) = Σi min(xβi , y
β
i )

• Laplacian RBF kernel K(x, y) = exp(−Σi|xi−yi|
σ2 )

• Sublinear RBF kernel K(x, y) = exp(−Σi|xi−yi|0.5
σ2 )

• Hellinger kernel K(x, y) = Σi
√
xiyi

4. Experiments and Results

Our implementation 1 is done in python. We only use the follow-
ing libraries: numpy, scipy, random, pandas, matplotlib, os.

Data visualization We plot the images and identify the ten classes:
(from 0 to 9) aircraft, car, bird, cat, deer, dog, frog, horse, boat, truck.

1The source code can be found at https://github.com/
zhengying-liu/Kernel-Methods-Data-Challenge.

Computation complexity reduction A standard Principal Com-
ponent Analysis (PCA) for dimension reduction is done to the local
descriptors before handing them to compute the Fisher Vector. A ker-
nel PCA with a Gaussian kernel is done to the global descriptors be-
fore performing the classification. In Fisher Vector, we only choose
part of the local descriptors to feed the GMM. All of the above make
our experiments computationally feasible. To give a rough idea, it
takes approximately eight hours to extract SIFT descriptors for all
images, fifteen minutes to extract HOG descriptors, four hours to
perform one iteration of the EM algorithm in the GMM if consid-
ering all local descriptors, six minutes if considering only one local
descriptor per image.

Parameter tuning In SIFT, since the images are relatively small,
we reduce the contrast threshold to keep a reasonable amount of key-
points. In the detection of local extrema, we do not compare a pixel to
the neighboring 26 pixels (in a cube) in the Difference-of-Gaussians
pyramid, but rather the 6 neighboring ones (left, right, front, back,
top, down). In the classification, we perform a 5-fold cross valida-
tion to choose classifiers, kernels, and the parameters of the kernels.

Ensemble learning Our final submission is done by voting among
three predictions — HOG + SVM one versus one classifier with
Laplacian RBF kernel (σ = 3.4), HOG + Fisher Vector + linear
SVM one versus one classifier, and SIFT + Fisher Vector + linear
SVM one versus one classifier. In case where all three predictions
are different, we pick one at random. This gives a public score 0.691
(ranked 3rd) and a private score 0.697 (ranked 2nd).

5. Conclusion
In this data challenge, we have implemented several state-of-the-

art feature extraction techniques, namely HOG, SIFT, kernel descrip-
tors, and Fisher, and experimented with various kernel SVMs. To
represent one image by a 1-D vector, we had the choice among raw
data, the concatenation of local descriptors, and the construction of
global descriptor on local descriptors. We performed multi-class
prediction on test data by fitting a kernel SVM with training data.
Some computation complexity reduction techniques are done prior
to the classification training and parameters are tuned by cross vali-
dation. HOG worked well with SVM one versus one classifier with
Laplacian RBF kernel in our use case. Fisher kernel is already data-
adaptive so it is combined with a linear SVM. A final voting among
several predictions further increased our accuracy.
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