
Immediate Versus Delayed Reward for the Game of
Go

Chia-Man Hung
Master MVA

chia-man.hung@polytechnique.edu

Dexiong Chen
Master MVA

dexiong.chen@polytechnique.edu

Abstract

The goal of this project is to study the main principles behind the problem of
reinforcement learning for the game of Go, and focus on the benefit and drawbacks
of using an informative reward given at each time step versus a reward only given
at the very end of the game. The experimental study focuses on the Monte-Carlo
Tree Search algorithm and some variants of it as well as on min-max trees.

1 Introduction

Monte-Carlo methods have been extensively studied in the last 3 decades and have been successfully
applied to the game of Go since 1993 when Brügmann [4] introduced the method. Since the discovery
of the upper confidence tree (UCT) in 2006 by Kocsis and Szepesvári [6], Monte-Carlo tree search
(MCTS) became the state-of-the-art algorithm and attracted a number of researchers’ attention. In
the last decade, a number of variants and related work have been proposed and studied. Among them,
Browne et al. [3] have made a breakthrough in the theoretical aspect, which guarantees the theoretical
performance of MCTS.

Before the success of alphaGo in 2016, Go was one of the few classic games for which professional
human players were so far ahead of computer players. One of the main issues is the computational
complexity, as the number of possible actions increases exponentially with the time steps. As a
consequence, the basic MCTS process requires simulating all feasible actions until the end of the
game in order to back-propagate the final result to the current state node. In this situation, the reward
of one action is called delayed reward as one only gets reward at the end. A possible approach to
reduce the set of feasible actions during simulation is to define an immediate reward after each action,
intuitively according to the current state and the state after an action. This reward should be capable
to keep the most potential actions while ignoring the less probable actions.

In this project, we will review the main principles of MCTS and apply it to the game of Go. We
will especially focus on the benefit and drawbacks of using an immediate reward at each time step
compared to a delayed reward given at the very end of a game. The comparisons will be carried out
by considering the number of wins as well as the computational complexity.

The report is organized as follows. In Section 2, we review and study MCTS algorithms, including
the UCT algorithm. Then in Section 3, we introduce the notion of immediate reward and explain
how it can be used to prune the search tree. In Section 4, the implementation details are presented,
including the environment that we chose, code structure as well as some practical remarks. In Section
5, we illustrate and analyze the experimental results.

2 Monte-Carlo Tree Search

The key idea of MCTS is to construct a search tree step by step by repeatedly choosing the most
promising child of the already researched tree, expanding it, and then evaluating the new leaf node



by simulating the game until the end. The result of the simulation, a win or loss value is then
back-propagated to all the parent nodes up to the root, and a new promising node is chosen.

2.1 General Algorithm

In more details, four steps are applied per search iteration [3]:

• Selection: Starting at the root node, a child selection policy is recursively applied to descend
through the tree until a node with unvisited children is reached. Note that at the first iterations
of MCTS, we select the root node directly since it has unvisited children.

• Expansion: One child is added to expand the tree.

• Simulation: From the chosen node, a default policy is applied to simulate the game.

• Back-propagation: The result of the game is back-propagated to all its parent nodes to
update the statistics.

Figure 1: One iteration of the general MCTS approach. Courtesy of [3].

Algorithm 1: General MCTS approach.
1 function MCTSSearch (s0)
2 create root node v0 with state s0
3 for i = 1, ..., itermax do
4 vl ← TreePolicy(v0)
5 ∆← DefaultPolicy(s(vl))
6 BackPropagate(vl, ∆)
7 end

2.2 UCT Algorithm

During the selection step, a tree policy is required to explore the tree to decide on promising children.
For this reason, the widely used Upper Confidence Bound applied for Trees (UCT) [6] was derived
from the UCB1 [1] policy. In treating the choice of child node as a multi-armed bandit problem,
the value of the child node is the expected reward approximated by the Monte-Carlo simulations.
UCT balances the exploitation of rewarding nodes whilst allowing exploration of less visited nodes.
Consider a node v, the tree policy determining which promising child node to choose is defined as:

v∗ = arg max
vc∈child(v)

W (vc)

N(vc)
+K

√
lnN(v)

N(vc)
(1)

2



where vc is a child of v, W is the wins count, N is the visits count, and K is a exploration constant
to tune.

A pseudo-code from [3] is illustrated below.

Algorithm 2: The UCT algorithm.
1 function UCTSearch (s0)
2 create root node v0 with state s0
3 for i = 1, ..., itermax do
4 vl ← TreePolicy(v0)
5 ∆← DefaultPolicy(s(vl))
6 BackPropagate(vl, ∆)
7 end
8 return a(BestChild(v0, 0))
9

10 function TreePolicy(v)
11 while v is non-terminal do
12 if v not fully expanded then
13 return Expand(v)
14 end
15 else
16 v ← BestChild(v, Cp)
17 end
18 end
19 return v
20
21 function Expand(v)
22 choose a ∈ untried actions from A(s(v))
23 add a new child v′ to v with s(v′) = f(s(v), a) and a(v′) = a
24 return v′
25
26 function BestChild(v, c)

27 return arg maxv′∈child(v)
W (v′)
N(v′) + c

√
lnN(v)
N(v′)

28
29 function DefaultPolicy(s)
30 while s is non-terminal do
31 choose a ∈ A(s) uniformly at random
32 s← f(s, a)
33 end
34 return reward for state s
35
36 function BackPropagate(v,∆)
37 while v is not null do
38 N(v)← N(v) + 1
39 W (v)←W (v) + ∆
40 v ← parent of v
41 end

It is shown in [6] that the probability of choosing a sub-optimal action at the root of the tree converges
to zero at a polynomial rate as the number of iterations grows to infinity. This proves that given
enough time and memory, UCT converges to the optimal action. The working of UCT is also
demonstrated empirically on a variety of domains.

2.3 Variants

In the general MCTS approach, there is freedom in choosing the tree policy and the default policy.
Enhancements proposed to the tree policy are generally divided into five categories: bandit-based

3



enhancements, selection enhancements, all-moves-as-first enhancements (update statistics for all
actions selected as if they were the first action applied), game-theoretic enhancements (back up the
theoretic value of a state to improve reward estimates for non-terminal nodes), and move pruning.
Most of the time, the default policy is the basic random policy, as it is simple, does not require domain
knowledge and cover different area of the search space.

In the context of Go, Rapid Action Value Estimation (RAVE), an all-moves-as-first enhancement, is
commonly used.

3 Immediate Reward

Without enough time budget, we can use domain-specific knowledge to speed up the convergence.
More specially, in the selection step, we prune nodes that do not seem promising and focus on nodes
that will probably result in optimal actions. In this section, we first define the immediate reward used
throughout the project. Then, we describe how it is used to speed up the convergence.

3.1 Problem Setting

The ultimate goal in the game of Go is to control a territory by putting stones on the board. Based on
this understanding, we design a simple reward function as follows.

Influence function. Let p, g ∈ G be the positions of two stones, where G is the set of all positions
on the board. We define the influence function of a white stone (respectively black) at position p over
q by

IW4 (p, q) = (4− d4(p, q))+, I
B
4 (p, q) = −(4− d4(p, q))+, (2)

where d4 denotes the distance of between two positions on the board.
The total influence of the stones on position q at step t is given by

It(q) =
∑
p∈Wt

IW4 (p, q) +
∑
p∈Bt

IB4 (p, q), (3)

where Wt is the set of white stones present on the board at time t, and Bt is the set of black stones
present on the board at time t.

Boundary. In practice, the board of Go is finite, which constrains the game and creates side effect.
We consider two ways to handle the boundary as follows.

• Empty. We take into account the lack of freedom induced by the boundary and modify the
influence function on the boundary and corners. For instance, IW4 (p, q) = (3− d4(p, q))+
if p is on the boundary, and IW4 (p, q) = (2− d4(p, q))+ if p is one of the 4 corners.

• Adversarial. We may simply consider that the boundary of the board is surrounded by
adversarial stones. We add a virtual boundary covered with black stones when it is white’s
turn, and with white stones when it is black’s turn. In that case, we redefine Wt, Bt
accordingly to include these virtual stones. To avoid confusion, we write IWt when the
boundary is black (white’s turn) and IBt when the boundary is white (black’s turn).

Reward function. The reward for white increases by 1 when a neutral territory becomes white,
and by 2 when a territory controlled by the black turns white. We define the following functions for
the τ th play of player white (respectively black):

rWτ (p) =
∑
q∈G

(IW2τ (q)− IW2τ−1(q))+1{IW2τ−1(q) < 0 ≤ IW2τ (q)}

rBτ (p) =
∑
q∈G

(−IB2τ+1(q) + IB2τ (q))+1{IB2τ (q) > 0 ≥ IB2τ+1(q)}
(4)

4



Figure 2: Illustration of the white’s value of the influence function with empty boundary. Left: white
(1, 3), (0, 5), black (0, 0). Middle: white (0, 2), (0, 6), black (1, 7). Right: white (6, 6), (1, 7), black
(8, 8).

Figure 3: Illustration of the white’s value of the influence function with adversarial boundary. Left:
white (1, 3), (0, 5), black (0, 0). Middle: white (0, 2), (0, 6), black (1, 7). Right: white (6, 6), (1, 7),
black (8, 8).

It then remains to count the number of stones captured by playing a position p. Let cWτ denote the
number of black stones captured by white when playing for the τ th time. The final reward functions
for the τ th play of player white (respectively black) are then defined by

rW,τ (p) = rWτ (p) + cWτ

rB,τ (p) = rBτ (p) + cBτ .
(5)

3.2 Pruning

Using this reward, we may prune the search tree by considering the ε-optimal actions, i.e. the actions
of the the immediate reward is at most ε-away from the action with the best immediate reward. ε = 0
corresponds to the case where we consider only the actions with the best immediate reward and
ε = 1 corresponds to keeping all the actions and not pruning at all. The former one leads to a high
branching factor, thus speeds up the convergence if the pruning is done correctly (without dropping
the optimal action), whereas the latter one keeps necessarily the optimal action since it does not take
any risk of dropping actions. This parameter ε is non-trivial to tune.

3.3 Min-Max Principle

Go is an adversarial game. In this kind of game, if our goal is to maximize the accumulated reward,
choosing the action with the best immediate reward at each step might not always result in winning.
This is due to the fact that player A’s move affects player B’s feasible actions and thus their reward.
An action with a poor immediate reward may be considerable if it prevents the opponent from getting
a high immediate reward. As a consequence, expanding the set of ε-optimal moves to a larger set that
includes also the ε-optimal set for the opponent may lead to better performance. And one may even
extend this exploration up to k further steps.

5



In a formal way, we can consider the following min-max value which defines the set described above

a∗ = max
a∈A(s)

min
b∈A(s(a))

r(a, s)− r(b, s(a)) (6)

where s is the initial state, a an action taken by player A, b an action taken by player B, s(a) the state
after playing a, and A the set of all feasible actions given a state.

Here, a∗ represents the best action of the first player taken two steps into account. We can extend this
reasoning to more steps and the computation is done recursively. When considering the best action to
take up to k steps, it suffices to replace r(b, s(a)) by the best accumulated reward of playing b up to
k − 1 steps.

In the pruning process, instead of using the immediate reward directly, we may consider the accumu-
lated immediate reward taken two or more steps into account, assuming that both players are smart
enough to perform the action that maximizes his accumulated immediate reward.

3.4 Back-Propagated Value

In the general approach, we back-propagate the reward at the end of the game according to the official
game result, which is 1 in case of win, 0 for a draw, and -1 else. This could be replaced by the
accumulated immediate reward. One benefit is that the accumulated immediate reward gives us a
rough idea of how the game goes before reaching the end. One drawback is that we do not have the
guarantee that it agrees with the official game result.

4 Implementation

4.1 Environment

We use the OpenAI gym environment to simulate the game of Go. Its python API is wrapped over
a Go engine written in C named Pachi [2]. It provides us the game simulator, which helps us play
actions, observe the game state, and determine the final result.

4.2 Code Structure

Our code is adapted from the basic MCTS in [5]. The core classes are game_state.py, game_node.py,
and uct.py. A game state contains the state of the game board, and all relevant information about
the strategy used, including whether the pruning process is added, how the game result to be back-
propagated is determined, whether the min-max principle is taken into account, how many steps
in the min-max principle is considered, etc. Game nodes are used to construct the search tree and
contain the statistics needed for the UCB1 formula.

The UCT algorithm returns the next action to perform given a game state as root by running a given
number of iterations. At the beginning of the UCT algorithm, the game node corresponding to the
root game state is created. At each iteration, a game state is cloned from the root game state. During
the four steps selection, expansion, simulation, back-propagation in MCTS, the only game state is
maintained to the current state. One node may be added in the expansion. After the back-propagation,
the game state will be garbage-collected, but not the the search tree with all the game nodes added
gradually.

board.py is a helper class that enables us to compute the immediate reward given the state of the
game board.

strategy.py is an abstract class defining the game strategy used. play_game allows us to play a game
between two players easily by defining their strategy.

4.3 Optimization

When an action is performed, only part of the game board is affected. Due to this observation, some
optimization is done to compute the immediate reward, given a state of the game board and an action.
In the case where no stone is captured, instead of recomputing the entire value of the influence
function, we only need to update it according to the action. This simplifies the computation roughly
by a factor of 40.

6



Scenario 1
Player A Random strategy
Player B UCT strategy: 1000 iterations, without pruning, delayed reward
Wins A/B/draws 2/97/1

Scenario 2
Player A UCT strategy: 10 iterations, without pruning, delayed reward
Player B UCT strategy: 10 iterations, without pruning, immediate reward
Wins A/B/draws 59/40/1

Scenario 3
Player A UCT strategy: 100 iterations, without pruning, delayed reward
Player B UCT strategy: 100 iterations, with pruning, ε=0, delayed reward
Wins A/B/draws 0/100/0

Scenario 4
Player A UCT strategy: 100 iterations, without pruning, immediate reward
Player B UCT strategy: 100 iterations, with pruning, ε=0, immediate reward
Wins A/B/draws 0/100/0

Scenario 5
Player A UCT strategy: 100 iterations, with pruning, ε=0, delayed reward
Player B UCT strategy: 100 iterations, with pruning, ε=0 and min-max, delayed reward
Wins A/B/draws 19/80/1

Scenario 6
Player A UCT strategy: 10 iterations, with pruning, ε=0, delayed reward
Player B UCT strategy: 10 iterations, with pruning, ε=0.5, delayed reward
Wins A/B/draws 75/25/0

Scenario 7
Player A UCT strategy: 100 iterations, with pruning, ε=0, delayed reward
Player B UCT strategy: 100 iterations, with pruning, ε=0.5 delayed reward
Wins A/B/draws 55/45/0

Scenario 8
Player A UCT strategy: 10 iterations, with pruning, ε=0, the delayed reward
Player B UCT strategy: 10 iterations, with pruning, ε=0.25, delayed reward
Wins A/B/draws 64/36/0

Scenario 9
Player A UCT strategy: 100 iterations, with pruning, ε=0, delayed reward
Player B UCT strategy: 100 iterations, with pruning, ε=0.125, delayed reward
Wins A/B/draws 49/51/0

Scenario 10
Player A UCT strategy: 10 iterations, with pruning, ε=0, delayed reward
Player B UCT strategy: 10 iterations, with pruning, ε=0.125, delayed reward
Wins A/B/draws 63/37/0

Table 1: Play games with different strategies.

5 Experiments and Results

There is some freedom in the above definitions of rewards, due to the way the boundary is handled.
We compare the two boundaries as follows. We simulate an amount of games with both players using
the random strategy. We then compare how many times the game result given by the accumulated
immediate reward differs from the official game result. In 1000 games, the number of times with
different game result is roughly 200 games, independent of whether we use the empty boundary or
the adversarial boundary. This means that these two boundaries have nearly the same performance.
In the following, we choose to define our immediate reward by using the empty boundary.

In this section, we illustrate and analyze the advantages and drawbacks of using an immediate reward
to prune the search tree. In order to compare different strategies, we list the results of our experiments
in Table 1.

7



From Scenario 1, we see that the UCT strategy significantly outperforms the random strategy. From
Scenario 2, the UCT strategy using the delayed reward as the value to be back-propagated in the
MCTS is slightly better than using the immediate reward. From Scenario 3 and 4, choosing the
optimal action according to the immediate reward is significantly better than not pruning. From
Scenario 5, taking the min-max principle into account greatly outperforms only pruning. In Scenario
6 to 10, we try different values of ε. ε = 0 seems to perform better in most of the cases, especially
when the number of iterations is low. In fact, a low number of iterations leads to a low number of
game nodes, thus resulting in a low-depth search tree when the search space is large. Finally, in the
case where ε = 0.125 with 100 iterations, ε = 0 and ε = 0.125 have nearly the same performance.
We expect that as the number of iterations grows even larger, a non-zero ε will perform better than a
zero one, as choosing the action with the best immediate reward does not necessarily result in the
best action as discussed previously.

6 Conclusion

In this report, the general Monte-Carlo Tree Search algorithm and the most popular Upper Confidence
Tree algorithm are presented. The immediate reward is defined based on the knowledge of Go and its
benefits are explained. The way our implementation of UCT is done in the game of Go is shown.
Multiple experiments are run to compare different strategies.

We have compared quantitatively the performance of whether or not using an immediate reward in
the UCT algorithm. Due to the time complexity, we have fixed the number of iterations at each step
time and noticed that using an immediate reward for pruning performs significantly better than using
only the delayed reward. We have also compared a min-max strategy to a one-step optimal strategy
and found better performance for the min-max strategy. Besides, we have also taken into account the
influence of the choice of ε. We have noticed that more iterations will be needed as the value of ε gets
larger.

As future work, it would be interesting to examine the k-step min-max strategy and study the
impact of the choice of k. We could also fix a time budget at each time we select an action to
perform, rather than fixing the number of iterations in MCTS. This would make the comparison easier.
Further optimization could be done with parallel computing. Other variants of MCTS combined with
immediate reward might result in better performance.

Acknowledgments

We would like to express our special thanks of gratitude to our supervisor Odalric-Ambrym Maillard,
who guided us through the project and provided insightful advice, as well as our professor Alessandro
Lazaric, who taught us the foundations of reinforcement learning.

References
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine

learning, 47(2-3):235–256, 2002.

[2] P. Baudi. MCTS with information sharing. PhD thesis, Ph. D. dissertation, Charles University in Prague-
Faculty of Mathematics and Physics, 2011.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[4] B. Brügmann. Monte carlo go. Technical report, Citeseer, 1993.

[5] P. I. Cowling, E. J. Powley, and D. Whitehouse. Information set monte carlo tree search. IEEE Transactions
on Computational Intelligence and AI in Games, 4(2):120–143, 2012.

[6] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In European conference on machine
learning, pages 282–293. Springer, 2006.

8


	Introduction
	Monte-Carlo Tree Search
	General Algorithm
	UCT Algorithm
	Variants

	Immediate Reward
	Problem Setting
	Pruning
	Min-Max Principle
	Back-Propagated Value

	Implementation
	Environment
	Code Structure
	Optimization

	Experiments and Results
	Conclusion

