
Multi-class Image Classification: Learning Output Kernels

with Block Coordinate Descent

Chia-Man Hung Wei Jiang Zhengying Liu Xiaoling Zhu

April 5, 2017

Abstract

Output Kernel Learning (OKL) is a kernel-based technology to deal with learning
problems with multiple outputs, such as multi-class and multi-label classification
or vectorial regression, while automatically learning a kernel which can exploit the
relationship between different output components. OKL is based on a regularization
problem over a reproducing kernel Hilbert space (RKHS), which can be solved by a
block-wise coordinate descent method. When the dimensionality of the output space
is high, constraints on the output kernel rank may be useful to make the algorithm
computationally feasible. To demonstrate that OKL can improve the accuracy of
prediction and reveal the output structure, we implement OKL together with low
rank OKL and experiment them on several tasks, including digit recognition and
image classification. We compare the training time and the accuracy of OKL and
low rank OKL with different parameters.

Contents

1 Introduction 2

2 Problem 2
2.1 Reproducing Kernel Hilbert Spaces . 2
2.2 Learning Tasks . 3
2.3 Regularized Risk . 3

3 Methods 4
3.1 OKL with Block Coordinate Descent . 4
3.2 Low Rank OKL with Block Coordinate Descent 6

4 Experiments 6
4.1 Implementation . 6
4.2 Multi-Output Regression . 7
4.3 Digit Recognition . 10
4.4 Image Classification . 11

5 Conclusion 15

1

1 Introduction

Nowadays, methods for learning vector-valued functions have become popular re-
search topics, motivated by applications in multi-output regression, multi-label and
multi-class classification. For these tasks, selecting a model that correctly exploits
the relationships among different output components is crucial to ensure good learn-
ing performances. In this project, we introduce a method that simultaneously learns a
vector-valued function and the kernel between the output components.

Within the framework of regularization in reproducing kernel Hilbert spaces (RKHS)
of vector-valued functions [1] [6] [2], the matrix-valued kernel can be decomposed as the
product of a scalar kernel (input kernel) and a positive semi-definite kernel that repre-
sents the similarity between the output components (output kernel). The output kernel
can be used for visualization and revealing structures in output space, for example in
multi-class classification task, output kernel can help to cluster classes into homogeneous
group. The choice of the output kernel may significantly influence learning performance,
especially when prior knowledge is not sufficient to fix the output kernel in advance.
Therefore, it is important to select an efficient data-driven method to learn an output
kernel.

The paper [5] first proposes an optimization problem of regularized risk functional,
then shows that the objective function is invex so the stationary points are global mini-
mizers. Finally the solution can be obtained by block coordinate descent.

However, this method directly operates on the full output kernel matrix which is
full-rank. But when the dimensionality of the output space is very high, storing and ma-
nipulating the full matrix may not be efficient or feasible. Another paper [4] introduces
a new OKL method that enforces a rank constraint on the output kernel and directly
operates on a factor of the kernel matrix (low-rank OKL). The optimization problem
can be seen as the kernelized version of nuclear norm regularization, which can also be
solved by block coordinate descent algorithm.

This report is organized as follows. First, to make it self-contained, we recall some
notions of reproducing kernel Hilbert space in the general case of operator-valued kernels
and formulate the learning tasks as an optimization problem. Then, we introduce two
methods - the OKL and the low rank OKL - that give an approximate solution. Last,
we show the results of our experiments on different learning tasks and compare the two
methods.

2 Problem

2.1 Reproducing Kernel Hilbert Spaces

First we recall several notations and facts of RKHS. We suppose that Y denote
a Hilbert space endowed with inner product 〈·, ·〉Y , and L(Y) the space of bounded
linear operators from Y to itself. Every RKHS of Y-valued functions (over X) H can
be associated with a unique positive semi-definite Y-kernel H, called the reproducing
kernel. Conversely, given a positive semi-definite Y-kernel H on X , there exists a unique

2

RKHS of Y-valued functions defined over X whose reproducing kernel is H. For later
use, we recall that the reproducing property in this operator-valued kernel version is
that the following equality

〈H(x, ·)y, g〉H = 〈y, g(x)〉Y

holds for any x ∈ X , y ∈ Y, g ∈ H.
In our tasks of regression or classification, we assume Y = Rm, then L(Y) is the space

of square matrices of order m, denoted by Mm. By fixing a basis {bi}i∈T for the output
space, where T = {1, · · · ,m}, we can uniquely define an associated (scalar-valued) kernel
R over X × T such that

〈bi, H(x1, x2)bj〉Y = R((x1, i), (x2, j))

So that an Y-kernel can be seen as a function that maps two inputs into Mm. Similarly
by fixing any function g : X → Y, we can uniquely define an associated function h :
X × T → R such that

g(x) =
∑
i∈T

h(x, i)bi

Finally, by fixing a basis for the output space, the problem of learning a vector-valued
function can be equivalently regarded as a problem of learning a scalar function defined
over an enlarged input set.

2.2 Learning Tasks

First we should learn a function taking values in Rm. In multiple output regres-
sion, each component of the vector directly corresponds to an output. For multi-class
classification, output data are modeled as binary vectors, with +1 in the position corre-
sponding to the class. We regard g as confidence scores for the different classes, and the
classification rule can be considered as

ŷ(x) = arg maxi∈T gi(x)

For binary multi-label classification, outputs are vectors with +1 or −1 at the different
components. The classification rule is given by

ŷi(x) = sign(gi(x))

2.3 Regularized Risk

We assume that Sm++ denotes the open cone of positive definite matrices, Sm+ denotes
the closed cone of positive definite matrices. For any A, B ∈ Mm, we denote the
Frobenius inner product 〈A,B〉F := tr(ATB) and Frobenius norm ||A||F =

√
〈A,A〉F .

Let H denote the RKHS of Y-valued functions g : X → Y associated with the kernel
H defined as

H = KL

3

where K is a positive semi-definite scalar kernel on X that measures the similarity
between input, and L∈ Sm+ is a symmetric positive semi-definite kernel that encodes the
relationship between output components.

In order to simultaneously learn g and L from a training set of size l with data pairs
(xi, yi) ∈ X × Y, we propose a regularized optimization problem on the risk function

min
L∈Sm+

min
g∈H

l∑
i=1

||g(xi)− yi||22
2λ

+
||g||2H

2
+
||L||2F

2
(1)

3 Methods

3.1 OKL with Block Coordinate Descent

According to the representer theorem, the solution of inner optimization problem
has the form

g∗(x) =
l∑

i=1

H(x, xi)ci = L
l∑

i=1

ciK(x, xi) (2)

where ci ∈ Y(i = 1, · · · , l). Assume that Y = (y1, · · · , yl)T , C = (c1, · · · , cl)T , Kij =
K(xi, xj), then the problem (1) can be rewritten as

min
L∈Sm+

min
C∈Rl×m

||Y−KCL||2F
2λ

+
〈CTKC,L〉F

2
+
||L||2F

2
(3)

To see this (the following computation is omitted in the paper [5]), we have for the first
term

g(xi) = L

n∑
j=1

cjK(xj , xi) = L(C>K)i,

so
[g(x1), ..., g(xn)]> = (L(C>K))> = KCL

thus

1

2λ

l∑
i=1

‖yi − g(xi)‖22 =
1

2λ
‖Y −KCL‖2F .

For the second term in (1), we can apply the reproducing property of the kernel H = KL
and get

‖g‖2H = 〈
∑
i

H(xi, ·)ci,
∑
j

H(xj , ·)cj〉H =
∑
i,j

〈H(xi, ·)ci, H(xj , ·)cj〉H

=
∑
i,j

〈ci, H(xj , xi)cj〉Y =
∑
i

〈ci,L
∑
j

K(xj , xi)cj〉Y

=
∑
i

〈ci,L(C>K)i〉Y = tr(CLC>K) = tr(LC>KC)

= 〈CTKC,L〉F .

(4)

4

We let Q(L,C) denote the objective function, which is convex with respect to C
and strongly convex with respect to L. Moreover, Q is an invex function with respect
to (L,C), which ensures that the stationary point is global minimizer. [10] In order to
solve the problem (3), we apply the block-wise coordinate descent as in Algorithm 1,
which minimizes Q(L,C) w.r.t L (respectively C) by fixing C (respectively L).

Algorithm 1 OKL with Block Coordinate Descent

1: Input K
2: Initialization L, C, E, Z ← 0
3: while ||Z + λC−Y||F ≥ δ do
4: C ← solution to KCL + λC = Y
5: E ← KC
6: P ← 1

2E
TC− L

7: Q ← solution to (ETE + λIQ) = P
8: L ← L + λQ
9: Z ← EL

10: end while
11: Output C, L

As the subproblem w.r.t L is well explained in [5], we will only give more details on
how we implement the subproblem w.r.t C in line 4. The subproblem aims to find C
such that

KCL + λC = Y.

As both K and L are real symmetric matrix (thus diagonalizable), we can find two
orthogonal matrices U and V such that

KU = UDK

and
LV = VDL

where DK = diag{λ1, ..., λ`} and DL = diag{µ1, ..., µm} are two diagonal matrices.
Then by multiplying U> on the left and V on the right, we get

U>KCLV + λU>CV = DKU>CVDL + λU>CV = U>YV

so we have the simple relation

(U>CV)ij =
1

λ+ λiµj
(U>YV)ij

and we can reconstruct C from U>CV easily, again from U and V. So all we need is
to find the eigen-decomposition for K (once) and for L (several times).

5

3.2 Low Rank OKL with Block Coordinate Descent

However, the method above directly operates on the full output kernel. But when
the dimensionality of the output space is very high, storing and manipulating the full
matrix may not be efficient or feasible. Now we apply a new OKL method that enforces
a rank constraint on the output kernel and directly operates on a factor of the kernel
matrix (low-rank OKL).

Now we rewrite the optimization (1) with constraint of output rank.

min
L∈Sm,p

+

min
g∈H

l∑
i=1

||g(xi)− yi||22
2λ

+
||g||2H

2
+
||L||2F

2
(5)

with the notation
Sm,p
+ = {A ∈ Sm+ : rank(A) ≤ p}

Remark that although the objective function is invex, due to the rank constraint, the
stationary points are not guaranteed to be feasible.

Now we consider a map g : X → Y of the form

g(x) = (g2 ◦ g1)(x)

where g1 belongs to an RKHSH1 of vector-valued functions whose kernel is decomposable
as H = KI, and g2 belongs to H2 of linear operators of the type g2(z) = Bz. We can
interpret that g1 performs a non-linear feature extraction and g2 combines the extracted
features to produce output vector.

The paper [5] shows that the problem (5) is equivalent to

min
g2∈H2

min
g1∈H∞

l∑
i=1

||yi − (g2 ◦ g1)(xi)||22
2λ

+
||g1||2H1

2
+
||g2||2H2

2
(6)

According the the representer theorem, the inner problem of (6) admits a solution of
the form g1 =

∑l
i=1 aiKxi and thus g = B(

∑l
i=1 aiKxi). With the notation A =

(a1, · · · , al)T , the problem 6 can be rewritten as

min
B∈Rm×p

min
A∈Rl×p

||Y−KABT ||2F
2λ

+
〈A,KA〉F

2
+
||B||2F

2
(7)

In order to solve the problem (7), we apply the block-wise coordinate descent.

4 Experiments

4.1 Implementation

Our code1 is written in python. We mainly use the opencv library for image feature
extraction, sklearn for data splitting and SVM, and numpy for basic computation.

In a nutshell, we implement OKL and low rank OKL for all tasks by adapting from
the Matlab code provided on Dinuzzo’s website2. For multi-class image classification,

1https://github.com/zhengying-liu/Structured-Data-Project
2http://people.tuebingen.mpg.de/fdinuzzo/okl.html

6

https://github.com/zhengying-liu/Structured-Data-Project
http://people.tuebingen.mpg.de/fdinuzzo/okl.html

Algorithm 2 Low rank OKL with Block Coordinate Descent

1: Input K
2: Initialization B ← Im×p
3: eigendecomposition K = UXdiag(λX)UT

X

4: Ỹ← UT
XY

5: do
6: eigendecomposition BTB = UY diag(λY)UT

Y

7: Q← ỸBUY

8: V← Q� (λXλ
T
Y + λeeT)

9: Bp ← B
10: E← diag(λX)V

11: B← Ỹ
T
E(ETE + λI)−1UT

Y

12: until ||B−Bp||F ≥ δ
13: A← UXVUT

Y

14: Output A,B

We also implement Histograms of Oriented Gradients (HOG) [3] on our own, a simple
classical feature extraction method, but it turns out that our implementation is slower
than that provided by the opencv library. Thus, we rather adopt their implementation.

4.2 Multi-Output Regression

In the first experiments, we use the synthetic multiple time series reconstruction
datasets provided by Dinuzzo. We choose the number of processes (i.e. the output
dimension) m = 200 and randomly extract l = 100 samples to be used for training,
another 100 as validation set for tuning the regularization parameter λ and rank p, and
finally the remaining 100 as test set are used for examining the prediction accuracy with
tuned λ. The input kernels K for the three sets are available in the dataset.

We first implement OKL and low rank OKL with block coordinate descent and
then compare the results of two methods with the baseline obtained by fixing the output
kernel to the identity. For this multi output regression task, we adopt Mean Square Error
(MSE) as evaluation metric. We also take the execution time as a factor of comparison.

As for the model selection, for OKL method, the solution is computed for 30 loga-
rithmically spaced values of the regularization parameter λ in the range

λ ∈ [10−5α, α], α =

√
||YTKY||2 (8)

For low rank OKL, the solution is computed for each pair of value of the rank
parameter p = 1, · · · ,m and the same value of λ above.

The results of parameters tuning show that: For OKL, when λ = 13.093, MSE for
validation set reaches the minimum = 18.982; for low rank OKL, when p = 12, λ =
28.966, MSE for validation set reaches the minimum = 18.788.

7

Comparing Training Time

Figure 1: OKL training time as a function of λ

We can observe from Figure 1 that for OKL with block coordinate descent, most of
the computation time is spent in correspondence with intermediate values of λ. Later we
will see that these values of λ also correspond to the best reconstruction performances.

Figure 2: Low rank OKL training time as a function of λ and p

As seen from the left panel of Figure 2, we choose several values of rank p =
1, 10, 30, 50, 100, 150, 200 and plot the training time in function of λ. For each fixed
p, we have the same pattern of the influence of λ. Moreover, the ”peak pattern” is more
obvious when p is larger. From the right panel of Figure 2 where the λ is the optimal
choice, we can conclude that the execution time has a tendency of augmentation with
the increase of p.

Comparing Figure 2 with Figure 1, we find that training time in correspondence
with the best low rank model (p = 12, λ = 28.966) is reduced by more than an order of
magnitude with respect to the full rank model (λ = 13.093).

8

Comparing MSE

Figure 3: MSE as a function of λ for validation set (left panel) and test set (right panel,
where dotted line shows the position of best-tuned λ). Green line: baseline, blue line:
OKL, red line: low-rank OKL

The left panel of Figure 3 shows that the OKL with block coordinate descent yields
better results than the baseline, when the value of λ is wisely selected. And the low
rank OKL outperforms the other two methods in general case. The right panel shows
that the best-tuned parameter λ from validation set still performs well in the test set.

Figure 4: MSE for low rank OKL in function of p for validation set (left panel) and test
set (right panel, where dotted line shows the position of best-tuned p)

The left panel of Figure 4 shows that the prediction error descends sharply when p
increases form 1 to 10, but then remains stable until the largest value p = m. If we take
the training time into consideration, it is wise to choose a smaller rank value around 10.
The right panel shows that the best-tuned parameter p from validation set still performs
well in the test set.

9

In conclusion, in terms of prediction error, the OKL and low rank OKL have similar
accuracy. But if training time is considered, the low rank OKL performs better than
OKL.

4.3 Digit Recognition

USPS digits dataset3refers to numeric data obtained from the scanning of handwrit-
ten digits from 0 to 9. The features are pixel representation of size 16× 16. We turn the
labels of each digit to a vector of size 10, where each position represent a component.
Then this task is turned into a multi-class classification with output dimension m = 10.

We use the standard training/test split of USPS digits, with the rate 4 : 1, and
then apply a Gaussian kernel on the raw pixel representation. After implementing the
OKL method, we evaluate the prediction effect with the metric of accuracy. As for the
model selection, the solution is computed for 30 logarithmically spaced values of the
regularization parameter λ in the same range as (8). Finally, according to the output
kernel L, visualization of similarities of output components can be shown.

For this task, we do not use low-rank OKL. Since the output space is already low
dimensional (m = 10), there is no need to reduce the rank to improve training efficiency.
In fact, experiments show that the low-rank OKL in this case will massively reduce the
accuracy of prediction.

For OKL, when λ = 0.065, test accuracy reaches the maximum = 0.981.

Figure 5: OKL training time (left panel) and accuracy (right panel) as a function of λ,
where dotted line shows the position of best-tuned λ)

We observe from Figure 5 that when λ becomes smaller, the accuracy improves but
the training time also sharply increases.

As seen from the right panel of Figure 5, when λ is small enough to reach a threshold,
the accuracy will remain at a high value. To explain this observation, We consider that
When λ is small enough, the regularization is very weak. Learning results will perfectly

3http://riemenschneider.hayko.at/vision/dataset/task.php?did=96

10

http://riemenschneider.hayko.at/vision/dataset/task.php?did=96

perform on training set but may not be suitable for test set, which leads to the overfitting
issue in general case. But in our task, we assume that the test dataset is very similar to
training set, because the shape of digits is simplex enough. As a result, the overfitting
issue does not exist in this task.

Now we can illustrate the relationship between output components according to the
value of output kernel matrix L.

Figure 6: Interpreting the output kernel, by visualizing edges associated with off diagonal
entries of L with largest value

Note that, since we use the Gaussian kernel on the pixels, the local information in
the image is lost. It follows that the learned the class similarities are ’blind’ to shape
information. Classes that have correlated ’digit’ regions are deemed similar.

In conclusion, the accuracy achieved (98.1%) is comparable to published results and
the visualization can reveal the similarity between components.

4.4 Image Classification

Caltech 1014 [7] and Caltech 2505 [8] are typically used to perform multi-class image
classification. In Caltech 101, pictures of objects belong to 101 categories. There are
about 40 to 800 images per category. Most categories have about 50 images. The size
of each image is roughly 300 x 200 pixels. In Caltech 256, pictures of objects belong to
256 categories, which increases the difficulty of the task. The number of images of the
smallest category is increased to about 80. In the following, experiments are done with
images from Caltech 101.

4http://www.vision.caltech.edu/Image_Datasets/Caltech101/
5http://www.vision.caltech.edu/Image_Datasets/Caltech256/

11

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

Rather than using raw pixels, we use HOG and SIFT to extract local features from
images.

Histograms of Oriented Gradients (HOG) We follow the method introduced in
[3], which consists of dividing the image into regions, for each region accumulating a local
1-D histogram of local gradient directions over the pixels of the region. A histogram
corresponds to a local descriptor.

Scale-Invariant Feature Transform (SIFT) As described in [9], this method is
composed of the following steps. First we build a pyramid of images convolved with Gaus-
sian filters at different scales, and then the differences of successive Gaussian-blurred im-
ages. Potential keypoints are taken from the local extrema of the difference-of-Gaussians
pyramid. Second, we adjust the keypoints to more accurate positions by interpolation
using the quadratic Taylor expansion of the Difference-of-Gaussians function taking the
candidate keypoints of the previous step as origins. At the same time, we discard key-
points that are either unstable, low-contrast or on edges. Third, we assign an orientation
to each keypoint by computing a histogram of oriented gradients in the neighboring pix-
els. The orientation of the highest peak is assigned. If other peaks are within 80% of the
highest peak, new keypoints at the same position with those orientations will be created.
Last, we build a local feature descriptor for each keypoint by creating 16 histograms,
taking the orientation of the previous step into account; each histogram is built upon
the Gaussian-weighted oriented gradients of neighboring pixels. By concatenating 16
histograms, we obtain a local feature descriptor.

Once we have the features, we class the images by using a classifier. In this case, we
try OKL and low rank OKL.

Comparing Training Time

Figure 7: OKL training time as a function of λ

12

We can observe from Figure 7 that for OKL with block coordinate descent, the
maximum of execution time appears when the best accuracy score is achieved for λ =
0.109. As the value of λ progressively goes far from 0.109, execution time decreases.

Figure 8: Low rank OKL training time as a function of λ and p

As seen from the left panel of Figure 8, we choose several values of rank p =
1, 10, 30, 50, 100 and plot the training time in function of λ. For each fixed p, we have
nearly the same pattern of the influence of λ. Moreover, the ”peak pattern” is more
obvious when p is larger. From the right panel of Figure 2 where the λ is the optimal
choice, we can observe that the peaks of the execution time appear irregularly when
p < 100 and then maintain at a low level when then value of p exceeds the output
dimension (101 in this case).

Comparing Figure 8 with Figure 7, we find that training time in correspondence with
the best low rank model (p = 100, lambda = 0.359) is shorter than that of the best rank
model (λ = 0.109) even for the same accuracy score (0.45).

13

Comparing accuracy score

Figure 9: Accuracy score as a function of λ for test set (where dotted line shows the
position of best-tuned λ).

Figure 9 shows that, OKL and LROKL with block coordinate descent yield almost
the same results (accuracy = 0.45) if the value of λ is wisely selected. When the value
of λ is small enough, both the results given by OKL and LROKL are comparable and
satisfying. As for LROKL, if the value of λ is large enough the accuracy score sharply
decreases and then remains unchanged at a low level.

Figure 10: Accuracy score for low rank OKL as a function of p for test set (where dotted
line shows the position of best-tuned p)

Figure 10 shows that, as the value of p grows, accuracy score first increases at a
large rate and then slowly reaches its maximum when p gets close to 101 (the output
dimension). Nevertheless, the accuracy score remains unchanged if p exceeds 101.

To conclude, LROKL and OKL manifest similar performance in the classification of
Caltech101 except for the execution time, since the output dimension is not large enough

14

to benefit from the amelioration of LROKL.

5 Conclusion

In the report, we gave an overview of the output kernel learning problems and two
methods to learn simultaneously a vector-valued function and a kernel between the out-
put’s components. The first method is formulated as an optimization problem and can
be solved by an efficient block-wise coordinate descent algorithm. The second one adds
a constraint on the output kernel rank and may be useful when the dimensionality is
high. By comparing the two methods on several learning tasks - multi-output regression,
digit recognition, multi-class image classification - we showed that both of them are sat-
isfying and yield similar performance in general, but if the execution time is considered,
low rank OKL performs better than OKL in high dimensional cases. In the task of
digit recognition, we visualized that the learned output kernel encodes the relationship
between the output components as claimed.

15

References

[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the American math-
ematical society, 68(3):337–404, 1950.

[2] A. Caponnetto, C. A. Micchelli, M. Pontil, and Y. Ying. Universal multi-task
kernels. Journal of Machine Learning Research, 9(Jul):1615–1646, 2008.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[4] F. Dinuzzo and K. Fukumizu. Learning low-rank output kernels. In ACML, pages
181–196, 2011.

[5] F. Dinuzzo, C. S. Ong, G. Pillonetto, and P. V. Gehler. Learning output kernels
with block coordinate descent. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 49–56, 2011.

[6] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6(Apr):615–637, 2005.

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. Computer vision and Image understanding, 106(1):59–70, 2007.

[8] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[9] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[10] P. Pardalos, J. R. Birge, D.-Z. Du, C. Floudas, J. Mockus, H. Sherali, and
G. Stavroulakis. Nonconvex Optimization and Its Applications, volume 1. Springer,
1994.

16

	Introduction
	Problem
	Reproducing Kernel Hilbert Spaces
	Learning Tasks
	Regularized Risk

	Methods
	OKL with Block Coordinate Descent
	Low Rank OKL with Block Coordinate Descent

	Experiments
	Implementation
	Multi-Output Regression
	Digit Recognition
	Image Classification

	Conclusion

