
SHORTEST PATHS ON SURFACES
GEODESICS IN HEAT

INF555 Digital Representation
and Analysis of Shapes

28 novembre 2015

Ruoqi He & Chia-Man Hung

Shortest Paths on Surfaces
Geodesics in Heat

1
INTRODUCTION

In this project we present the algorithm of a practical method for computing approximate
shortest paths (geodesics) and our implementation on triangle meshes. This method of Heat
Flow is based on Geodesics in Heat : A New Approach to Computing Distance Based on Heat
Flow, Crane [2013]. Results are mainly showed by pictures. The last part is dedicated to ad-
ditional work, including the two boundary conditions, the case of multisource and a system of
navigation represented by a walking man on surface.

2
HEAT FLOW ALGORITHM

In this section we explain the Heat Flow algorithm used in this project. It determines the
geodesic distance to a specified subset of a given domain. We interpret it on a triangle mesh.

Notations : heat field u, vector field X, distance function φ.

2.1 First Step

Integrate the heat field u̇ = ∆u.
The heat u of a point on a considered surface is a value between 0 and 1. Source has 1 as

its value.
In other words, we solve (id− t∆)ut = u0 where ut is the heat field after a time step t and

u0 is the initial heat field.
On a triangle mesh and in matrix form, we have (A − tLc)u = u0 where A is a diagonal

matrix containing the vertex areas, A−1Lc is the discrete Laplacian matrix of a triangle mesh,
and u0 is a vector which has value 1 on sources and 0 otherwise. Remark that here u0 should
be multiplied at left by A. However, in the case of one point source, this does not affect the
second step.

2.2 Second Step

Evaluate the vector field X = −∇u/ |∇u|.
We are only interested in the direction of ∇u and not in its value. X points to the opposite

direction of the source.

2/12

Shortest Paths on Surfaces
Geodesics in Heat

On a triangle mesh, by using the formula given in the article, we calculate the vector field
on every triangle.

2.3 Third Step

Solve the Poisson equation ∆φ = ∇ ·X.
If a distance function φ exists, ∇φ should give us a unit vector on every point, pointing to

the opposite directin of the source. We approximate such a distance function φ by minimizing∫
|∇φ−X|2, which is equivalent to solving the Poisson equation ∆φ = ∇ ·X.
On a triangle mesh and in matrix form, we solve Lcφ = b where b is the vector of divergences

of the vector field X.

3
IMPLEMENTATION

3.1 Environment

We chose Unity to implement the heat method in order to better visualize the result. All
codes are written in C#, and the scene is built with Unity Editor. For the main problem, we use
the library ALGLIB to do sparse matrix operations and to solve linear equations. In addition,
we use the C5 Generic Collection Library for the priority queue implementation.

3.2 Mesh representation

Figure 1 – Boundary face

We obtain ordinary triangle meshes via various ways. Those
meshes are represented by a vertex array (array of Vector3) and
a triangle array (sets of 3 indexes stored in an int array). We
first wrote a method to convert them to half-edge representa-
tion, defined in Geometry.cs. The conversion can be done in
time of O(nd2) where n is the number of vertices and d is the
maximum degree of vertices. There are however two important
things to consider :

1. The half-edge representation is not well defined when
using meshes with boundaries. In order to incorporate with
other methods built on this representation, we decided to add
a new face to cap each boundary. Those faces are marked as
“boundary faces”, and all vertices around them are marked

3/12

Shortest Paths on Surfaces
Geodesics in Heat

as “boundary vertice”. This way we can easily implement the
boundary conditions in the heat method.

Figure 2 – UV seams

2. Many 3D models obtained from the
internet have UV mappings, and thus have
UV seams. This means that at the same po-
sition there can be two separate points ha-
ving different UV coordinates. So the geo-
metry we built may have seam-like boun-
daries blocking the way. To cope with
this, we implemented a method to weld
all overlapping vertices with a complexity
of O(nlogn), based on kdTree range sear-
ching.

3.3 Matrix precalculation

For each mesh loaded, we calculate in the first place its discrete unweighted laplacian matrix
−Lc, and the matrices A − tLc adapted to two different boundary conditions (if there are
boundaries).

— Dirichlet condition :
We set all elements in the rows/columns of the boundary vertices to 0, except the
diagonal elements. This way the heat value will always be 0 at the boundary.

— Neumann condition :
The original laplacian matrix described in the paper satisfies Neumann condition.

We also build a Vector3 array of size (3× triangle count) keeping all the values of cot(angle)
times opposite edge vector, in order to accelerate the calculation of divergence.

For the first time, we skipped the Cholesky decomposition step since the overall perfor-
mance without it is still reasonable. However, because of the numerical problems that we will
explain afterwards, we finally implemented the Cholesky decomposition. It is applied on all
precalculated matrices.

3.4 Main calculation

For single source problem, we follow these steps :

1. Calculate the heat field u by solving the heat equation (A− tLc)u = u0.
2. Calculate X, the normalized gradient of the heat field, on every triangle.
3. Calculate DivX on every vertex using the value of X on its surrounding triangles.
4. Calculate the distance field φ by solving the Poisson equation Lcφ = DivX

4/12

Shortest Paths on Surfaces
Geodesics in Heat

5. We then calculate the gradient of the distance field ∇φ on every triangle which can be
used to calculate the shortest paths.

At first, without Cholesky decomposition, we used LinCG (Linear Conjugate Gradient)
solver to solve linear equations. This solver solves symmetric positive-definite problems, but it
works fine even with our second semi-definite problem (Poisson equation). We just need to shift
the result such that the distance value at the source equals to zero.

Figure 3 – Left : LinCG / Right : Cholesky

However, from the result we obtained, we
observed that LinCG solver is sensible to nu-
merical errors. The solution of the heat equa-
tion contains values ranging from 1 to 10−20 or
smaller. The longer the distance to the source,
the smaller the heat value is. LinCG returns
values of 0 when smaller than ∼ 10−12, so the
heat gradient of the farther area cannot be
computed. We can only improve the solution
by increasing the time step t, which increases
the heat value but creates a smoothed dis-
tance field.

Therefore, we chose to implement the Cholesky decomposition of matrices. It consists of
decomposing a symmetric positive matrix M into LLT , where L is a lower triangular matrix.
This means the linear equation LLTx = y becomes two basic triangular systems, that can
be solved by simple substitution. This improves greatly the calculation time when switching
sources (The decomposition is only calculated once for every mesh). And since we calculate the
exact solution this way, we managed to have much smaller numerical errors, so as to eliminate
the problems above. We overcame two difficulties regarding the Cholesky decomposition :

— While M is a sparse matrix, L is not necessarily sparse, especially when the entries of
M are mostly far away from the diagonal. This comes to one of our model which has
randomly ordered vertices – it costs more than 4G RAM space to store the matrix L.
After we reorder the vertices of the mesh along a certain axis, L becomes much sparser
and takes much less time to compute.

— We need to add a small regularization term to the diagonal entries of the laplacian matrix
to get strict positive-definiteness (needed for the Cholesky decomposition of ALGLIB).

4
RESULTS

5/12

Shortest Paths on Surfaces
Geodesics in Heat

4.1 Main results

We successfully obtained some very nice results on a variety of meshes. Below are some
pictures of the calculated geodesics and gradient fields.

Figure 4 – Family photo

We observed the difference between the heat gradient and the distance gradient. The dis-
tance gradient smoothed out some non-uniform areas.

Figure 5 – Left : Gradient of distance field / Right : Gradient of heat field

6/12

Shortest Paths on Surfaces
Geodesics in Heat

4.2 Time step t

We usually set the time step t to the square of the maximum edge length. Using a much
larger time step can create a smoothed distance. The smoothed distance is in general longer than
the exact distance, because the trajectory is more curved. Below is an example of comparison.

Figure 6 – Left : t = h2 / Right : t = 100h2 (h is the maximum edge length)

4.3 Boundary conditions

We also compared the results when using different boundary conditions. We observed that
with high value of t (smoothed distance), the paths obtained tend to avoid borders with Dirichlet
condition, and to adhere to borders with Neumann condition. And by using the average heat
field calculated from two different conditions we get more natural paths.

Figure 7 – Left : Neumann / Middle : Dirichlet / Right : Average condition

7/12

Shortest Paths on Surfaces
Geodesics in Heat

4.4 Broken mesh

The triceratops mesh that we tested has some bizarrely sharp obtuse triangles – they will
break the positiveness of the heat matrix if we do not put a limit to the cotangent values of an
angle. Even if we do, the result seems broken. We find a workaround by resetting the position
of a vertex of the triangle to the average position of its neighbors.

Figure 8 – Mesh fixing

4.5 Calculation time cost

Model Triangles LinCG Cholesky
Pre Solve Pre Solve

High Genus 3328 34ms 27ms 64ms 8.9ms
Bague 5304 55ms 60ms 109ms 17ms
Cow 5804 62ms 109ms 335ms 16ms

Triceratops 5660 59ms 105ms 306ms 15ms
Sphere 1 9024 94ms 99ms 236ms 21ms
Sphere 3 6912 65ms 59ms 327ms 18ms

Hemisphere 3456 51ms 34ms 131ms 10ms
Skull 12200 183ms 338ms 989ms 38ms
Maze 5120 63ms 94ms 134ms 12ms
Horse 39996 447ms 1355ms 2047ms 113ms
Dragon 20388 188ms 1291ms 1787ms 58ms

Table 1 – Comparison of LinCG and Cholesky decomposition

8/12

Shortest Paths on Surfaces
Geodesics in Heat

5
ADDITIONAL WORK

5.1 How we obtain meshes ?

Below are the four options we used :
1. OFF format mesh from TD (High Genus, Bague, Cow, Triceratops, Horse) -> Unity

mesh -> halfedge mesh
We wrote a OFF parser to transform OFF format meshes into Unity meshes.

2. Internet resources (Skull, Dragon) -> Unity mesh -> processing (weld uv seams) ->
halfedge mesh

3. 3Dmax handmade mesh (Maze, Sphere 2 & 3, Hemisphere) -> Unity mesh -> halfedge
mesh

4. Code generated mesh (Sphere 1) -> halfedge mesh

5.2 Optimization

Our solver ALGLIB solves sparse symetric positve-definite matrix system a lot faster than
only symetric matrix system and Cholesky decomposition works only with symetric positve-
definite matrix. We noticed that −Lc is a symetric positve-semidefinite matrix. Therefore,
A− tLc (for t > 0) in the first step is a symetric positve-definite matrix and εI −Lc (for ε > 0)
in the third step is also a symetric positve-definite matrix. Below is a math proof.

Prove that −Lc is a symetric positve-semidefinite matrix.
We note Uij = Eii +Ejj−Eij−Eji where Eij is an elementary matrix with only one nonnull

value 1 on position (i, j). By definition, −Lc is in form −Lc = ∑
i,j uijUij with all uij > 0. Since

the eigenvalues of Uij is 0 and 2, it is a symetric positve-semidefinite matrix. We conclude by
saying that any positive combination of symetric positve-semidefinite matrices is also a syme-
tric positve-semidefinite matrix. (Another proof is given in Lecture 9.)

5.3 Multisource

We also tried calculating the geodesics on surfaces when multiple vertices are marked as
sources. However, by simply changing the initial heat vector to u0 (the vector which has value
1 on sources and 0 otherwise) we generate incorrect heat field and distance field – the solved
heat field ut cannot guarantee equal values at each source vertex, and thus not every source

9/12

Shortest Paths on Surfaces
Geodesics in Heat

vertex has a distance of zero. Typically, the vertex surrounded by more source vertices has a
higher temperature and a negative distance.

Figure 9 – Left : Simply adding source on u0 / Right : Accurate multisource

We solved this by imposing the constraints ut = 1 at every source vertex in the heat
equation, and also the constraint φ = 0 at every source vertex in the Poisson equation. (The
first constraint cannot imply the second since the distance field we get is only the closest
potential of the heat gradient field.)

One downside, however, is that the matrices need to be modified to contain these extra
constraints related to the source. For exemple, to have ut = 1 at the source we put 1 at
the diagonal entries of the sources, and 0 everywhere else in the same lines and columns. We
then compensate the terms we deleted by adding an additional vector at the right side of the
equation. Because of this, the Cholesky decomposition need to be carried out each time we
change the source. This slows down the calculation a lot.

5.4 Navigation

Figure 10 – Navigation

Now that we have the distance field, we would like to
calculate the path from a given point to the source point.
We achieved this by first calculating the gradient of the dis-
tance field (step 5 of the main calculation) which is consi-
dered uniform on every triangle, then tracing a trajectory
by recursively following the gradient in every triangle and
entering the next one.

We visualized this process by moving a walking man on
the surface of the mesh. His position is defined by bary-
centric coordinates of the triangle he is standing on. The
distance gradient on it is also converted to barycentric co-
ordinates, but with a sum of 0. (In this way, we can add it
to the position coordinates and still get a barycentric coor-
dinate with a sum of 1.) A walk function takes a distance

10/12

Shortest Paths on Surfaces
Geodesics in Heat

as its argument and first moves on the triangle on which he is standing. By finding the first
coordinate that reaches zero we find the edge the man will come across. It then recursively calls
itself at the next triangle he enters, until walking the given distance or reaching the source.

There are however two extra cases to consider :
— The gradient is pointing to a boundary. In this case, when reaching a boundary, we walk

alongside it towards the smaller-distance vertex.
— Two neighboring triangles have opposing gradient. In this case, when reaching the middle

edge, we choose to follow the edge instead.

5.5 Mapping

In order to better visualize the distance field, we chose to map a striped texture onto the
surface of the mesh. It is actually quite simple : We create some striped textures with color
gradient that are only one pixel tall, assign it to the mesh, and for each vertex we set the U
value of its UV coordinates to its distance to the source. And that’s it ! When rendering the
texture, each point on a triangle has its U coordinate interpolated from the three vertices of
the triangle, and it is exactly the interpolated distance of this point – so it will be colored by
the pixel of the striped texture representing this distance. To make it even better, in addition
to the main texture, we also apply generated normal map, specular map and emission map to
each model, making it especially realistic. We just need to set the tangent vector of each vertex
to the average distance gradient on it to make the normal map work.

Figure 11 – An example of generated textures

5.6 Dijkstra

We implemented a simple Dijkstra shortest path algorithm on the graph made by the vertices
and edges of the mesh. This allows us to easily create a line of source vertices connecting two
selected vertices. (In the demo, press shift and click on the surface of the mesh.)

11/12

Shortest Paths on Surfaces
Geodesics in Heat

6
CONCLUSION & EXTENSIONS

Path finding is an important topic and has applications in several domains, such as video
games and robotics. The heat method is a simple way that allows us to compute approximate
geodesics to a point source or a specific domain of source (multisource) efficiently. In this project
we succeeded to implement this method on surfaces represented by triangle meshes. A system
of navigation is added to visualize the shortest path taken. Some extra work is done to improve
the visualization, such as texture mappings.

Regarding improvement we could make, in the case of multisource repeated calculation
of Cholesky decomposition is required due to the constraints of multisources. It might be
possible to operate on the Cholesky decomposition of Lc to cleverly avoid recalculating the
decomposition each time we change the source.

One extension we can think of is adding different weight on different areas to represent
the difficulty of passing through. Another is changing the form of the considered domain from
surfaces represented by triangle meshes to bounded spaces represented by tetrehedron meshes.

12/12

	Introduction
	Heat flow algorithm
	First Step
	Second Step
	Third Step

	Implementation
	Environment
	Mesh representation
	Matrix precalculation
	Main calculation

	Results
	Main results
	Time step t
	Boundary conditions
	Broken mesh
	Calculation time cost

	Additional work
	How we obtain meshes?
	Optimization
	Multisource
	Navigation
	Mapping
	Dijkstra

	Conclusion & extensions

