
Skybox

Ruoqi He & Chia-Man Hung

February 26, 2016

1 Introduction
In this project, we present a method to construct a skybox from a series

of photos we took ourselves. It is a graphical procedure of creating an entire
spherical background of a scene. The main idea consists of minimizing the
error of the rotation matrices of the camera.

To represent a 360 degrees panoramic view covering all the directions, the
simplest way is that of a skybox. A skybox consists of six images: one per
face of the cube and the camera is located at the center of the cube. Our
goal is to project the photos correctly onto the cube to construct a skybox.
The first difficulty we encountered is to obtain appropriate photos to build
the panorama. Our problem is then to determine the rotation and the scale
parameter associated to every photo.

2 Evolution

2.1 Taking photos
We would like to make a skybox of the Grand Hall. We used the camera

Canon EOS 70D with the lens Canon EF 28-135mm f/3.5-5.6 USM IS. We
took several rings of pictures by varying the angle of elevation. Each photo
ring consists of around twenty individual photos with a quasi-uniform angle
between two consecutive photos. The pictures are taken in a fixed position
using a tripod with the same manual configuration, including focal length,
aperture, shutter speed, ISO, and white balance (non-auto). The photos are
then processed by the Adobe Lightroom software to remove the distortion
using the corresponding lens profile. Photos are scaled to 1280x960 pixels.

1

2.2 Finding homography between two photos
Before matching every photo to construct a skybox, we have to know how

to match two photos, i.e. find homography between two photos having one
part in common. This is done in our main code findCentricPhotoHomography
by using the OpenCV library.

First, we extract some characteristic points named AKAZE. Then, we
match these points. After the matching, we compute the homography by
the RANSAC algorithm (findHomography). By applying the homography,
we can project the points of the first photo onto the second one and thus
combining the two photos.

2.3 If only the world was perfect
In an ideal world, everything is perfect. All we have to do is to compute

the homography between pairs of photos and project them one after another.
However, when applying this method to the central ring of photos, we ob-
served that the product of all the homographies is not close to the identity -
there was actually a big accumulated error. It is difficult at first to correct
the error - just multiplying all homographies by a power of the error matrix
has no physical meaning. It is also difficult to project a photo onto the 3d
cube only knowing his homography with the reference photo. We will now
seek to know the rotation of the camera for each photo using homographies.

2.4 Estimating the rotation
We then think of estimating the rotation of the camera for every photo from

the homography of two consecutive photos and computing the projection
onto the skybox. There is a direct relationship between a homography and
a rotation, which will be explained in details in Section 2.4.1. We try to
minimize the error corresponding to the rotation of the camera by using a
non-linear solver, which will be explained in Section 2.4.2.

2.4.1 Homography-rotation relationship

Given two photos having a part in common, numbered 1 and 2 respectively,
we have the following relationships.

(1) H1/2m1 = m2
(2) R1M|1 = R2M|2 = M
(3) R2/1M|2 = M|1

2

Figure 1: First attempt – the last photo does not match the first one well
enough

(4) Ki[R−1
i |0]M = mi, i ∈ {1, 2} où Ki =

 αi 0
αi 0

1

since we consider the center of the photo as the origin of the pixel coor-

dinates (mi)
The above relationships are in homogeneous coordinates.

Notations:
mi, i ∈ {1, 2} is a point of the photo i in the pixel coordinates of the

photo i.
H1/2 is the homography which transforms the pixel coordinates of a point

in the photo 1 to the pixel coordinates of the same point in the photo 2.
M|1, M|2 et M are the coordinates of the same point in the frame of

reference of the camera 1 and 2 and in the universal frame of reference re-
spectively.

Ri, i ∈ {1, 2} is the rotation of the camera i in the universal frame of
reference.

R2/1 is the rotation of the camera 2 in the frame of reference of the camera
1.

Ki, i ∈ {1, 2} characterize the camera i.
α can be characterized by the distance in pixels between the optic center

and the virtual retina. When increasing α, it reduces the field of view.

3

Solution of the equations:

H1/2 =

 1
1

α−1
2

R−1
2/1

 1
1

α1

In our implementation, we consider the frame of reference of the camera
corresponding to the first photo of the central ring as the universal frame of
reference.

Estimation of α:
Assume that α is the same for all photos. One can express the rotation

R depending on α by the homography-rotation relationship by knowing the
homography. To make R a rotation, R should verify RRT = I3, which can
be translated to an equation of α. This equation is used to calculate our α.
After doing so, we see that the α calculated varies considerably (about 10 %)
of a homography to another. Different α are finally tested to ensure that the
last photo of the central ring transformed by the corresponding homography
match the first one well enough.

2.4.2 Solving with ampl

The problem we face is actually a quadratic optimization problem. We
consider α as a constant and the rotation matrices of the camera as variables.
There are 9 variables for a photo. As input, we have the 9 initial points and
their transformation after applying the corresponding homography calculated
as in Section 2.2 for each pair of photos. We try to minimize sum of the error
for every pair of photos defined by the distance between the 9 transformed
points from the input and the 9 points obtained by applying the homography
computed from the rotation of the camera to the initial points. We have
constraints to ensure that rotation matrices are really rotations RRT = I3
and that the first rotation matrix is the identity. Some auxiliary variables
are added to make the objective function a linear function and to deal with
the homogeneity.

The whole thing is written in Ampl and tested with two different non-
linear solvers: BARON and Convex Over and Under ENvelopes for Nonlinear
Estimation (COUENNE). BARON seemed to be completely blocked and
COUENNE never converged (after six hours of computation).

4

3 Final solution

3.1 Optimizing with Ceres solver
As mentioned on its website, Ceres Solver is an open source C++

library for modeling and solving large, complicated optimization problems.
It is a feature rich, mature and performant library which has been used
in production at Google since 2010. Ceres Solver can solve two kinds of
problems: Non-linear Least Squares problems with bounds constraints and
General unconstrained optimization problems. We were convinced to be able
to solve our problem with Ceres.

The main structure of the modeling the problem is almost the same but
this time, the rotation is represented by a 3d vector whose direction is the
rotation axis and whose magnitude is the angle of the rotation (angle axis
representation). The α is also set as a variable for each photo. To sum up,
there are four variables for each photo and we do not need any constraints.
We set simple initial values to the variables by placing the photo evenly in
order not to be stuck at an unwanted local minimum.

3.2 Interlude: Let’s give ampl another chance
After using the Ceres solver, we realized that it is better to consider this

problem as a local minimization problem. We therefore tried three other local
minimum solvers with initial values for the rotation: knitro, minos and snopt.
We again tested with the central horizontal ring with the intial directions of
the photos evenly distributed on a circle. Knitro and minos all converged on
an infeasible point. Snopt said Nonlinear infeasibilities minimized. None of
the results satisfies the orthonormality of the rotation matrices.

The reason why we did not use the angle axis representation previously
when solving with ampl is that we thought we would have more chance to
solve our problem with quadratic constraints. Now, we are actually having
too many constraints and the solvers cannot satisfy all of them. So we
tried to write in ampl exactly the same inputs, variables, and constraints as
used in Ceres solver. This time the objective function and the intermediate
constraints are no longer quadratic, but every intermediate constraint can
be directly computed from the previous ones. We first tried with the central
ring of the photos. Minos returned exactly the initial values claiming that the
local minimum had been reached, which is obviously wrong. Snopt almost
immediately finished (Nonlinear infeasibilities minimized) but the values were
still almost the same as the initial values. Knitro did not converge after
10000 iterations (default number of iterations) and returned a result with

5

higher infeasibility after 20000 iterations. The result after 20000 iterations
is displayed and shown in Figure 2. Since it is already incorrect, we did not
try to apply the solver to all the photos.

Figure 2: The result after 20000 iterations of knitro

3.3 Matching the photos
We obtain the rotations and the α of the camera corresponding to each

photo as the output of the Ceres Solver. These values allow us to compute
the homography between a photo and a reference photo (see Section 2.4.1)
and thus to construct our skybox.

Figure 3: Choice of the color – left : maximal value / right : Z-Buffer +
interpolation

Several photos can be superposed at the same place, so we have to decide
how to choose the color we would like to use for our skybox. We first chose to
use the maximal value of the colors for every pixel. The skybox generated this
way is quite satisfying and it helps us to detect the eventual problem of the
placement of every photo. To make it even better, we chose at last to use a
sort of Z-Buffer. The idea consists of placing the virtual retinas of the photos

6

around the camera, and we see the "closest" image as illustrated in Figure
4. To achieve this, we create a depth map in addition (Z-Buffer) for every
face of the skybox. During the projection, the pixel with the smallest depth
is chosen. We can still improve the result by implementing an interpolation
zone. If the new pixel has a depth close to the one of the existing pixel,
we interpolate these colors according to the difference of the depth. See
Figure 3 for the comparison and Figure 4 for the principle of Z-Buffer and of
interpolation.

Figure 4: Matching of the photos by a Z-Buffer and interpolation

However, it is possible that the homography computed previously and set
as input is obviously wrong, due to the lack of characteristic points. This
causes some problems when solving the minimization problem. We decide to
use a Huber loss function, which reduces the impact of incorrect homography.
If by any chance there are still some misplaced photos, they can be identified
by the abnormal α value and we can choose not to display them. The result
can be still satisfying since photos are in general largely overlapped. In the
end, we actually successfully configured the solver such that all photos are
correctly calculated and displayed, even if many of the homographies are
completely wrong.

4 Results
See Figure 5.
In total, we used 204 photos.

Once we obtain the six faces of the cube, we visualize the generated
skybox using Unity. See the demos.

7

Figure 5: The six faces of the skybox of the Grand Hall

5 Remaining problems
There are still some problems due to our method or associated to our

material.

• Comparison between two photos without any characteristic point (Akaze
in our case)
For the ceiling, the wall, the floor, the sky, and there are often very few
characteristic points, even after increasing the contrast of the photos.
The Ransac algorithm therefore can not be applied to find the homog-
raphy between two adjacent photos. Thus our method, based on the
homography, does not work.

• Optic center of the camera not fixed
See Figure 6.
When we turn the camera around on the tripod to take rings of photos,
the optical center of the camera is not a fixed point as we cannot take
into account the unknown shift in our calculation. More specifically, the
optical center is in the middle of the lens, which itself rotates around
of the rotation center of the tripod.

8

Figure 6: Optic center of the camera not fixed

• Distorsion
Even after the correction of distortion by Adobe Lightroom software,
the distortion is less serious but still exists.

6 Conclusion
We managed to determine the rotation of our photos, which is the heart

of our problem, with the homography-rotation relationship, the calculated
homography between two adjacent photos by the Ransac algorithm, and
the minimization of self-defined error in the Ceres Solver. We projected
the photos onto the six faces of the cube. The matching of the photos is
improved by a Z-Buffer and interpolation. The results we obtained is quite
satisfying. The Unity demos are very realistic. Nevertheless, the top face
and the bottom are not completed because of the limit of the material and
some small flaws can be observed. With a special panoramic patella, the
problem of optic center could be solved and we might also be able to fill up
the whole skybox.

9

	Introduction
	Evolution
	Taking photos
	Finding homography between two photos
	If only the world was perfect
	Estimating the rotation
	Homography-rotation relationship
	Solving with ampl

	Final solution
	Optimizing with Ceres solver
	Interlude: Let's give ampl another chance
	Matching the photos

	Results
	Remaining problems
	Conclusion

