Skybox Creation

HE Ruoqi & HUNG Chia-Man

Skybox

Photo Acquisition

204 Photos

0---

Homography

Errors in estimation of homographies

Homography-Rotation Relationship

(1)
$$H_{1/2}m_1 = m_2$$

(2) $R_1M_{|1} = R_2M_{|2} = M$
(3) $R_{2/1}M_{|2} = M_{|1}$
(4) $K_i[R_i^{-1}|0]M = m_i, i \in \{1, 2\} \text{ où } K_i = \begin{pmatrix} \alpha_i & 0 \\ & \alpha_i & 0 \\ & & 1 \end{pmatrix}$
 $H_{1/2} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & \alpha_2^{-1} \end{pmatrix} R_{2/1}^{-1} \begin{pmatrix} 1 & & \\ & 1 & \\ & & \alpha_1 \end{pmatrix}$

Idea

- Find the rotation of the camera for each photo
- Minimize the difference between measured homographies and rotation-induced homographies

Definition of distance between homographies

Solving with Ampl

- Input: coordinates of 9 transformed points for each pair of photos
- Fixed parameter: Alpha (identical for all photos)
- Variables: Rotation matrix of each photo (9 values), intermediate vars
- Objective function: Sum of homography distances
- Constraints:
 - Orthonormality
 - First rotation = identity
 - Intermediate constraints
- Solver: Baron, Couenne

Solving with Ceres Solver

- Input: coordinates of 9 transformed points for each pair of photos
- Fixed parameter: None
- Variables:
 - Rotation of each photo in angle axis representation (3 values)
 - Alpha of each photo
- Objective function: Sum of homography distances
- Constraints: None
- Solver: Dense Schur solver

Display

- Z-buffer
- Interpolation

Demo!