

Skybox

Photo Acquisition

204 Photos

Homography

Errors in estimation of homographies

Homography-Rotation Relationship

(1) $H_{1 / 2} m_{1}=m_{2}$
(2) $R_{1} M_{\mid 1}=R_{2} M_{\mid 2}=M$
(3) $R_{2 / 1} M_{\mid 2}=M_{\mid 1}$
(4) $K_{i}\left[R_{i}^{-1} \mid 0\right] M=m_{i}, i \in\{1,2\}$ où $K_{i}=\left(\begin{array}{lll}\alpha_{i} & & 0 \\ & \alpha_{i} & 0 \\ & & 1\end{array}\right)$

$$
H_{1 / 2}=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & \alpha_{2}^{-1}
\end{array}\right) R_{2 / 1}^{-1}\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & \alpha_{1}
\end{array}\right)
$$

Idea

- Find the rotation of the camera for each photo
- Minimize the difference between measured homographies and rotation-induced homographies

Definition of distance between homographies

Solving with Ampl

- Input: coordinates of 9 transformed points for each pair of photos
- Fixed parameter: Alpha (identical for all photos)
- Variables: Rotation matrix of each photo (9 values), intermediate vars
- Objective function: Sum of homography distances
- Constraints:
- Orthonormality
- First rotation = identity
- Intermediate constraints
- Solver: Baron, Couenne

Solving with Ceres Solver

- Input: coordinates of 9 transformed points for each pair of photos
- Fixed parameter: None
- Variables:
- Rotation of each photo in angle axis representation (3 values)
- Alpha of each photo
- Objective function: Sum of homography distances
- Constraints: None
- Solver: Dense Schur solver

Display

- Z-buffer
- Interpolation

Demo!

