Pathfinding in 3D Space:

A*, Theta™, Lazy Theta™ in Octree Structure
Chia-Man Hung, Ruoqi He

CDT Autonomous Intelligent Machines & Systems, Department of Engineering Science, University of Oxford

UNIVERSITY OF

OXFORD

Introduction

Pathfinding addresses the problem of finding shortest paths from source to destination avoiding obstacles. It is an essential component of
Machine Intelligence and finds many applications in the fields of robotics, logistics and video games. In particular, pathfinding in 3D space
may be useful for drone navigation and real-time 3D strategy games. There exist different algorithms to solve exact shortest paths on graphs
(Dijkstra) or 3D surfaces (exact geodesics). However, finding exact Euclidean shortest paths in three or higher dimensions is an NP-hard
problem. Standard methods for pathfinding in a 2D plane could be extended to 3D, but they are either inefficient in time or memory.

The objective of this study is to find approximate shortest paths efficiently in 3D space with obstacles with reasonable memory consumption.

N ‘ E /D

thods ‘

, R ’ / 4 v/ ‘ '
. A& XTIAR 3
— M A

Multisource:

In the case where we have multiple
agents all going to the same
destination, instead of planning a
path for each individually, we start
the planning for one agent from
the destination and reuse
information for the others.

Graph construction:

Dual graph

The general pipeline of our method is as follows. First, we construct an octree
representing the 3D space with obstacles. Second, we construct a graph from the
octree. Third, we inject source and destination in the graph. Finally, we apply a
graph-based search algorithm to find approximate shortest paths.

2.

Edge-corner grap

-
-

Octree construction:

Injection of source and destination:

Avoid exhaustive search:
We precompute connectivity using union-
find to provide an immediate check of
whether a solution exists.

LR
T—

We subdivide the octree recursively wherever
the space it represents intersects an obstacle,
until a fixed lowest level. Since the obstacles are
normally objects represented by triangle meshes,
we implement a fast method to detect triangle-
cube intersection [1].

T

Multi-agent navigation:

Each agent navigates through
waypoints. A repulsive force is used
to avoid collision. In case an agent
loses line of sight to the next
waypoint (possibly

due to traffic jam),

a new path to the

next waypoint is

replanned.

P T

Quadtree (Octree in 2D)

A progressive octree is an octree with an
additional constraint: we require that the
difference of levels between neighbouring octree
leaves be no more than 1. This constraint can
potentially reduce approximation error while
applying graph-based pathfinding algorithms.

Line of sight:

Integer-based, so not prone
to floating point errors

Progressive quadtree

Y - |

Algorithms Results

Red: A*,
Green: Theta*,

Graph-based search algorithms:
Blue: Lazy Theta*

A* (1968 Hart [2]) — generalisation of Dijkstra

0

Comparison of data structures and algorithms:

.G O

SReReT
Con e 90eeeeeed

ORBRRRRERERERERD
I T T EEEEE SR EE Y
IR RRRRERERERY
IR RREREREE

cooneLeaea

It is a best-first search algorithm, meaning that among all
possible paths to the destination, it finds an exact
shortest path on the graph by first considering the nodes
that appear to incur the smallest cost (known distance to

*
con. 99999999 C
+T+F T XX R R R R

-
"
- n
R+ F X
+I+I+I T2 X 22 X

SOoRARs S
+E+E+ R ¥

SRBRAS
CRARAR

Data Structure

Algorithm

distance

time cost

distance

time cost

Octree

A*

Theta*

Lazy Theta*

121.38%
104.59%
104.65%

1.5ms
6.7ms
4.2ms

121.03%
102.71%
102.34%

28.0ms
236.1ms
114.8ms

Progressive Octree

A*

Theta*

Lazy Theta*

127.43%
103.49%
103.68%

3.3ms
6.3ms

3.2ms

126.88%
101.23%
101.16%

h5.6ms

229 4ms
108.8ms

the source + estimated distance to the dEStination)- Table 1: Comparison - A single sphere - Left: level = 7/ Right: level = 9

. ?
|

time cost
5.3ms
45.5ms
16.3ms
7.15ms
43.1ms
14.6ms

distance
3.3302
2.4600
2.4502
3.3222
2.4158
2.4205

distance | time cost

3.2472
2.4108
2.4135
3.3949
2.4009
2.4057

Data Structure Algorithm
Octree A*
Theta*
Lazy Theta*

Progressive Octree A*
Theta*
Lazy Theta™*

9.5ms
23.9ms

9.5ms
14.1ms
17.59ms
7.78ms

{.hmﬂ

Table 2: Comparison - A complex scene - Left: edge-corner graph/ Right: dual graph

Lazy Theta* (2010 Nash [4]) checks
whether the parent of a node is in its
line of sight only before exploring its
neighbours. It speeds up Theta*, but
might find a slightly longer path.

Theta* (2007 Nash [3]) allows paths
outside of the edges by performing a
line-of-sight check. However, it does not
guarantee to find the shortest path in
Euclidean space.

/ | _aF i
Conclusion

We compare the path distance and the time cost, for combinations of different
space discretisation data structures, graph construction methods and graph-
based search algorithms, in different obstacle settings.

We proposed methods to find approximate short paths in 3D space efficiently. We came up with a new space For more information:

discretisation data structure — progressive octree. Our best combination is progressive octree combined with
edge-corner graph, using Lazy Theta®™ for search. We achieved short paths in acceptable error (<2%) for
reasonable resolution in all of our test cases with known exact solution. Further optimisation is done to reduce
time cost, including considering connected components and reusing information for multisource case.

chiaman@robots.ox.ac.uk

https://ascane.github.io/ &3

@ Unity demo

Possible improvements consist of distributing computation at each frame, using other possible heuristics in A*-
family algorithms, post-process with local optimisation, etc.

"Eﬂﬂg-zig!!!!..!-!!!-"--'""“‘_r"-!!-!!S!!l!' = "
References
~——___ [1] Tomas Akenine-Moller. Fast 3d triangle-box overlap testing. In ACM SIGGRAPH 2005 Courses, page 8. ACM, 2005.
[2] Nilsson Hart and Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-4(2):100-107, 1968.
[3] Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner. Theta*: Any-angle path planning on grids. Proceedings of the National Conference on Artificial Intelligence, 22(2):1177, 2007.
[4] Alex Nash, Sven Koenig, and Craig Tovey. Lazy theta™: Any-angle path planning and path length analysis in 3d. In Proceedings of the National Conference on Artificial Intelligence, 2010.

.
® .
- .
- »
& .
y. .
.

