
Pathfinding in 3D Space:
A*, Theta*, Lazy Theta* in Octree Structure

Chia-Man Hung, Ruoqi He
CDT Autonomous Intelligent Machines & Systems, Department of Engineering Science, University of Oxford

Introduction

Pathfinding addresses the problem of finding shortest paths from source to destination avoiding obstacles. It is an essential component of
Machine Intelligence and finds many applications in the fields of robotics, logistics and video games. In particular, pathfinding in 3D space
may be useful for drone navigation and real-time 3D strategy games. There exist different algorithms to solve exact shortest paths on graphs
(Dijkstra) or 3D surfaces (exact geodesics). However, finding exact Euclidean shortest paths in three or higher dimensions is an NP-hard
problem. Standard methods for pathfinding in a 2D plane could be extended to 3D, but they are either inefficient in time or memory.

The objective of this study is to find approximate shortest paths efficiently in 3D space with obstacles with reasonable memory consumption.

Methods

Algorithms

Conclusion

References
[1] Tomas Akenine-Möller. Fast 3d triangle-box overlap testing. In ACM SIGGRAPH 2005 Courses, page 8. ACM, 2005.
[2] Nilsson Hart and Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.
[3] Alex Nash, Kenny Daniel, Sven Koenig, and Ariel Felner. Theta*: Any-angle path planning on grids. Proceedings of the National Conference on Artificial Intelligence, 22(2):1177, 2007.
[4] Alex Nash, Sven Koenig, and Craig Tovey. Lazy theta*: Any-angle path planning and path length analysis in 3d. In Proceedings of the National Conference on Artificial Intelligence, 2010.

Graph-based search algorithms:

A* (1968 Hart [2]) – generalisation of Dijkstra

Graph construction:

Dual graph Edge-corner graph

Injection of source and destination:

Multisource:

Line of sight:

Multi-agent navigation:

Comparison of data structures and algorithms:

Red: A*,
Green: Theta*,
Blue: Lazy Theta*

Unity demo

We proposed methods to find approximate short paths in 3D space efficiently. We came up with a new space
discretisation data structure – progressive octree. Our best combination is progressive octree combined with
edge-corner graph, using Lazy Theta* for search. We achieved short paths in acceptable error (<2%) for
reasonable resolution in all of our test cases with known exact solution. Further optimisation is done to reduce
time cost, including considering connected components and reusing information for multisource case.

Possible improvements consist of distributing computation at each frame, using other possible heuristics in A*-
family algorithms, post-process with local optimisation, etc.

Results

The general pipeline of our method is as follows. First, we construct an octree
representing the 3D space with obstacles. Second, we construct a graph from the
octree. Third, we inject source and destination in the graph. Finally, we apply a
graph-based search algorithm to find approximate shortest paths.

Theta* (2007 Nash [3]) allows paths
outside of the edges by performing a
line-of-sight check. However, it does not
guarantee to find the shortest path in
Euclidean space.

A path found by A*

Octree construction:

We subdivide the octree recursively wherever
the space it represents intersects an obstacle,
until a fixed lowest level. Since the obstacles are
normally objects represented by triangle meshes,
we implement a fast method to detect triangle-
cube intersection [1].

A progressive octree is an octree with an
additional constraint: we require that the
difference of levels between neighbouring octree
leaves be no more than 1. This constraint can
potentially reduce approximation error while
applying graph-based pathfinding algorithms.

Lazy Theta* (2010 Nash [4]) checks
whether the parent of a node is in its
line of sight only before exploring its
neighbours. It speeds up Theta*, but
might find a slightly longer path.

Avoid exhaustive search:

For more information:

chiaman@robots.ox.ac.uk

https://ascane.github.io/

Screenshot from Homeworld

It is a best-first search algorithm, meaning that among all
possible paths to the destination, it finds an exact
shortest path on the graph by first considering the nodes
that appear to incur the smallest cost (known distance to
the source + estimated distance to the destination).

We precompute connectivity using union-
find to provide an immediate check of
whether a solution exists.

Quadtree (Octree in 2D)

Progressive quadtree

In the case where we have multiple
agents all going to the same
destination, instead of planning a
path for each individually, we start
the planning for one agent from
the destination and reuse
information for the others.

We compare the path distance and the time cost, for combinations of different
space discretisation data structures, graph construction methods and graph-
based search algorithms, in different obstacle settings.

Each agent navigates through
waypoints. A repulsive force is used
to avoid collision. In case an agent
loses line of sight to the next
waypoint (possibly
due to traffic jam),
a new path to the
next waypoint is
replanned.Integer-based, so not prone

to floating point errors

