
Pathfinding in

3D Space
CHIA-MAN HUNG & RUOQI HE

Outline

 Introduction

 I. State of the art

 II. Algorithms

 III. Implementation in 3D space

 IV. Results

 Conclusion

Introduction

 Objective: Find the shortest paths efficiently in 3D space

 Applications: video games, drone navigation

I. State of the art
 Homeworld (1999) :

First famous real-time strategy game with movement in 3D space

I. State of the art

 Shortest paths in a graph

 Dijkstra (single source)

 O((|V|+|E|)log(|V|))

 Bellman-Ford (single source, weighted directed graph)

 O(|V||E|)

 Floyd-Warshall (for all pairs of vertices, weighted graph , no negative cycle)

 O(|V|3)

 A* (single source, single destination)

 O(n), n = length of the solution path => O(|E|)

I. State of the art

 2D - exact

 Visibility graph

 Anya (2D grid)

 2D - approximate

 Waypoints

 Navigation mesh + tunnel

 Family of Theta*

Non-optimality

 Navigation mesh + tunnel

path found VS true shortest path

I. State of the art

 3D surface - exact

 Windows (Fast exact and approximate geodesics on meshes 2005

Surazhsky)

 3D surface - approximate

 Heat (Geodesics in heat 2013 Crane)

 Fast-marching (1996 Sethian)

II. Algorithms

 World representation

 Tetrahedralization

 Convex decomposition

 Grid

 Octree

II. Algorithms

 A* (1968 Hart)

h admissible if

no over-estimation and

h(y) <= h(x) + d(x, y)

II. Algorithms

 Theta* (2007 Nash)

II. Algorithms

 Lazy Theta* (2010 Nash)

III. Implementation

 Octree construction

 Triangle-cube intersection

 Progressive octree

 Graph construction

Dual graph (not standard) Edge-corner

III. Implementation

 Line of sight

 Fast

 Robust

III. Implementation

 Injection of source and destination

III. Implementation - Optimisation

 Avoid exhaustive search

 Precompute the connectivity of the graph nodes

III. Implementation - Optimisation

 Multisource

 Reuse information

III. Implementation - Extension

 Application in video games

 Waypoints

 Repulsive force

 Replanning

IV. Results

Red: A*

Green: Theta*

Blue: Lazy Theta*

IV. Results

Red: A*

Green: Theta*

Blue: Lazy Theta*

IV. Results

Red: A*

Green: Theta*

Blue: Lazy Theta*

Non-optimality of Theta*

Demo !

 Demo !

 Demo !

 Demo !

 Demo !

 Demo !

 Demo !

 Demo !

 Demo !

Conclusion

 Exploration in a new domain

 Our proposition : Lazy Theta * + Progressive Octree + Edge-corner graph

 Possible Improvements

 Distribution of computation at each frame

 Other possibilities of h

 Post-processing

