Immediate Versus Delayed Rewards for the Game
of Go

Reinforcement Learning

Chia-Man Hung, Dexiong Chen
Master MVA

January 23, 2017

Chia-Man Hung, Dexiong Chen

Introduction

@ Go: a complex adversarial game
@ Infeasibility of the basic MCTS algorithm

@ Using a heuristic function can improve performance?

Chia-Man Hung, Dexiong Chen 2/29

@ Monte Carlo Tree Search
@ General Approach
o UCT Algorithm

© Immediate Reward
@ Problem Setting
@ Variants

© Implementation
@ Code Structure
@ Optimization

@ Experiments and Results

© Conclusion

Chia-Man Hung, Dexiong Chen

@ Monte Carlo Tree Search
@ General Approach
o UCT Algorithm

Chia-Man Hung, Dexiong Chen 4/29

General Approach

/—> Selection — Expansion — Simulation —= Backpropagation ~

Tree quﬁu.’ t

Policy Policy
Y
. A J

Chia-Man Hung, Dexiong Chen 5/29

General Approach

Algorithm 1: General MCTS approach.

1 function MCTSSearch (sg)
2 create root node vy with state sq
3 fori=1, .., itermax do

4 v — TreePolicy(vp)
5
6
7

A <+ DefaultPolicy(s(v;))
BackPropagate(v;, A)
end

Chia-Man Hung, Dexiong Chen 6/29

UCT Algorithm

Upper Confidence Bound applied for Trees (UCT)
Tree policy:

. W(ve) K InN(v) (1)

v* = arg max
ve€Echild(v) N(ve) N(vc)
where v, is a child of v, W is the wins count, N is the visits count,
and K is a exploration constant to tune.
Exploration vs. Exploitation

Chia-Man Hung, Dexiong Chen 7/29

© Immediate Reward
@ Problem Setting
@ Variants

Chia-Man Hung, Dexiong Chen 8/29

Problem Setting

@ Goal: Control a territory

@ Influence function:
The influence function of a white stone (respectively black) at
position p over g

1V (p,q) = (4—da(p,)+, I (p,q) = —(4—da(p.q))+, (2)

The total influence of the stones on position g at step t

T(q) = Y_ 1 (p.a)+ Y (P a), (3)

peW: pEB:

@ Boundary: Empty, Adversarial

Chia-Man Hung, Dexiong Chen 9/29

Problem Setting

@ Reward function:

i (p) =D (T (q) — T3 _1(0)+ T _1(q) < 0 < I3/ (a)}
qeG

rP(p) =) (~I511(q) + I5.(9)+ H{IZ(q) > 0 > I3 11 (q)}

qeG
(4)
The final reward functions for the 7" play of player white
(respectively black)

rw(p) = (p) + ¢
re-(p) = rf(p) + cf.

Chia-Man Hung, Dexiong Chen 10/29

[llustration of white's reward function

30 40
o 2] o 2 4 s s
24
o 0 32
18
20
2 12 2
06 15
4 00 .
s
06
o0
s 2 6
18 -8
® 8
2
16
30

Left: white (1, 3), (0, 5), black (. Middle: white (0, 2
(0, 6), bIack (1, 7). nght. whlte (6, 6), (1, 7), black (8,)

Chia-Man Hung, Dexiong Chen

@ Pruning: Keep promising children

@ Min-Max principle: Take into account the opponent’s move

= ' ,s) — r(b, 6
? arenf\lé)bemls?a))r(a s) = r(b:s(3)) ©)

@ Back-propagated value: Immediate reward or the official game
result (1 win, 0 draw, -1 lose)

Chia-Man Hung, Dexiong Chen 12/29

© Implementation
@ Code Structure
@ Optimization

Chia-Man Hung, Dexiong Chen 13/29

Code Structure

game_node game_state board

UCT_select_child get_immediate_reward set_boundary
add_child get_moves get_immediate_reward
update do_move
get_result
t

uct

UCT

strategy

get_state UCT_strategy
next_move

main

play_game(strategyl, strategy2)

random_strategy

Chia-Man Hung, Dexiong Chen 14 /29

Implementation - UCT

def UCT(rootstate, itermax, verbose=False):
"t Conduct a UCT search for itermax iterations starting from rootstate.

Return the best move from the rootstate

rootnode = game_node.GameNode(s =rootstate)
for i in range(itermax):
node = rootnode
state = rootstate.clone()
while node.untried_moves == [] and node.child nodes != []:

node = node.UCT_select_child()

state.do_move(node.move)

if node.untried_moves != []:
m = random.choice(node.untried_moves)
state.do_move(m)

node = node.add_child(m, state)

Implementation - UCT

while not(state.py_pachi_board.is_terminal) and state.nbmoves < 48395 and len(state.get_all moves(}) > 1:

state.do_move(random.choice(state.get_all mowves()), U alse)
while node is not None:
node.update(state.get_result{node.player_just_moved))
node = nede.parent_node
return sorted(rootnode.child_nodes, key = lambda c: c.visits)[-1].move

16 /29

Code Structure

game_node game_state board

UCT_select_child get_immediate_reward set_boundary
add_child get_moves get_immediate_reward
update do_move
get_result
t

uct

UCT

strategy

get_state UCT_strategy
next_move

main

play_game(strategyl, strategy2)

random_strategy

Chia-Man Hung, Dexiong Chen 17 /29

Optimization

In case of non-captures, the influence can be updated easily.
This is done in get_immediate_reward_aux in board.py.

Chia-Man Hung, Dexiong Chen 18 /29

@ Experiments and Results

Chia-Man Hung, Dexiong Chen 19/29

Experiments and Results

Which boundary to use? Empty or adversarial?

Compared with the official game result on 1000 games and got
similar performance.

= We use the empty boundary in the following.

Chia-Man Hung, Dexiong Chen 20/29

Experiments and Results

Scenario |
Player A Random strategy
Player B UCT strategy: 1000 iterations, without pruning, delayed reward
Wins A/B/draws 2/97/1

The default UCT strategy is better than the random strategy.

Chia-Man Hung, Dexiong Chen 21/29

Experiments and Results

Scenario 2
Player A UCT strategy: 10 iterations, without pruning, delayed reward
Player B UCT strategy: 10 iterations, without pruning, immediate reward
Wins A/B/draws 59/40/1

The delayed reward is slightly better than the immediate reward.

Chia-Man Hung, Dexiong Chen 22/29

Experiments and Results

Scenario 3
Player A UCT strategy: 100 iterations, without pruning, delayed reward
Player B UCT strategy: 100 iterations, with pruning, e=0, delayed reward
Wins A/B/draws 0/100/0

Scenario 4
Player A UCT strategy: 100 iterations, without pruning, immediate reward
Player B UCT strategy: 100 iterations, with pruning, =0, immediate reward
Wins A/B/draws 0/100/0

Choosing the optimal action is better than without pruning.

Chia-Man Hung, Dexiong Chen 23/29

Experiments and Results

Scenario 5
Player A UCT strategy: 100 iterations, with pruning, e=0, delayed reward
Player B UCT strategy: 100 iterations, with pruning, e=0 and min-max, delayed reward
Wins A/B/draws 19/80/1

Considering the min-max principle really boosts the performance.

Chia-Man Hung, Dexiong Chen 24 /29

Experiments and Results

Scenario 6

Player A UCT strategy: 10 iterations, with pruning, ¢=0, delayed reward
Player B UCT strategy: 10 iterations, with pruning, e=0.5, delayed reward
Wins A/B/draws 75/25/0

Scenario 7
Player A UCT strategy: 100 iterations, with pruning, €=0, delayed reward
Player B UCT strategy: 100 iterations, with pruning, e=0.5 delayed reward
Wins A/B/draws 55/45/0

Scenario 8
Player A UCT strategy: 10 iterations, with pruning, e=0, the delayed reward
Player B UCT strategy: 10 iterations, with pruning, e=0.25, delayed reward
Wins A/B/draws 64/36/0

Scenario 9
Player A UCT strategy: 100 iterations, with pruning, €=0, delayed reward
Player B UCT strategy: 100 iterations, with pruning, €=0.125, delayed reward
Wins A/B/draws 49/51/0

Scenario 10
Player A UCT strategy: 10 iterations, with pruning, ¢=0, delayed reward
Player B UCT strategy: 10 iterations, with pruning, €=0.125, delayed reward
Wins A/B/draws 63/37/0

Chia-Man Hung, Dexiong Chen 25/29

Experiments and Results

A (UCT epsilon=0) vs B (UCT epsilon=0~1)

0.8 10
iterations
— 100
0.6 iterations
&
B
=
s 04
m
o
0.2
0
0 0.2 0.4 0.6 0.8 1

B's epsilon

Chia-Man Hung, Dexiong Chen

© Conclusion

Chia-Man Hung, Dexiong Chen 27/29

Difficulties

@ Simulate the game of Go in the OpenAl Gym.

@ From understanding MCTS to actually implementing it.
Data structure.

@ Experiments are time-consuming (python vs. C++),
especially when the min-max principle is considered.
(Impossible when min-max level > 2). Ideally, we'd like to
have more iterations, otherwise hard to draw conclusion.

Chia-Man Hung, Dexiong Chen 28/29

Conclusion

@ Benefits of the immediate reward: Pruning and the min-max
principle boost the performance in general.

@ Drawbacks of the immediate reward: The optimal action
might be eliminated by pruning. Very slow. Even slower with
the min-max principle.

@ More iterations will be needed as € grows.

@ The choice of a reasonable boundary does not have much
influence on the performance.

@ Future work: The number of iterations fixed — Time budget
fixed. (The min-max level can be studied under a fixed time
budget.) Optimization with parallel computing. Try other
variants combined with the immediate reward.

Chia-Man Hung, Dexiong Chen 29/29

	Monte Carlo Tree Search
	General Approach
	UCT Algorithm

	Immediate Reward
	Problem Setting
	Variants

	Implementation
	Code Structure
	Optimization

	Experiments and Results
	Conclusion

