Immediate Versus Delayed Rewards for the Game of Go Reinforcement Learning

Chia-Man Hung, Dexiong Chen

Master MVA

January 23, 2017

Introduction

- Go: a complex adversarial game
- Infeasibility of the basic MCTS algorithm
- Using a heuristic function can improve performance?

- Monte Carlo Tree Search
 General Approach
 UCT Algorithm
- 2 Immediate Reward
 - Problem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results

5 Conclusion

- Monte Carlo Tree Search
 General Approach
 UCT Algorithm
- Immediate RewardProblem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- ④ Experiments and Results
- **5** Conclusion

General Approach

æ

<ロ> <同> <同> < 回> < 回>

Algorithm 1: General MCTS approach.

- 1 <u>function</u> MCTSSearch (s_0)
- 2 create root node v_0 with state s_0
- **3 for** *i* = 1, ..., *itermax* **do**
- 4 $v_l \leftarrow \text{TreePolicy}(v_0)$
- 5 $\Delta \leftarrow \text{DefaultPolicy}(\mathbf{s}(v_l))$
- 6 BackPropagate (v_l, Δ)
- 7 end

Upper Confidence Bound applied for Trees (UCT) Tree policy:

$$v^* = \underset{v_c \in \text{child}(v)}{\operatorname{arg\,max}} \frac{W(v_c)}{N(v_c)} + K_{\sqrt{\frac{\ln N(v)}{N(v_c)}}}$$
(1)

where v_c is a child of v, W is the wins count, N is the visits count, and K is a exploration constant to tune. Exploration vs. Exploitation

- Monte Carlo Tree Search
 General Approach
 UCT Algorithm
- Immediate RewardProblem Setting
 - Variants
- 3 Implementation
 - Code Structure
 - Optimization
- ④ Experiments and Results
- **5** Conclusion

- Goal: Control a territory
- Influence function:

The influence function of a white stone (respectively black) at position p over q

$$I_4^W(p,q) = (4 - d_4(p,q))_+, \ I_4^B(p,q) = -(4 - d_4(p,q))_+, \ (2)$$

The total influence of the stones on position q at step t

$$\mathcal{I}_{t}(q) = \sum_{p \in W_{t}} I_{4}^{W}(p,q) + \sum_{p \in B_{t}} I_{4}^{B}(p,q), \quad (3)$$

• Boundary: Empty, Adversarial

Problem Setting

Reward function:

$$\begin{aligned} r_{\tau}^{W}(p) &= \sum_{q \in G} (\mathcal{I}_{2\tau}^{W}(q) - \mathcal{I}_{2\tau-1}^{W}(q))_{+} \mathbb{1}\{\mathcal{I}_{2\tau-1}^{W}(q) < 0 \leq \mathcal{I}_{2\tau}^{W}(q)\} \\ r_{\tau}^{B}(p) &= \sum_{q \in G} (-\mathcal{I}_{2\tau+1}^{B}(q) + \mathcal{I}_{2\tau}^{B}(q))_{+} \mathbb{1}\{\mathcal{I}_{2\tau}^{B}(q) > 0 \geq \mathcal{I}_{2\tau+1}^{B}(q)\} \end{aligned}$$

$$(4)$$

The final reward functions for the τ^{th} play of player white (respectively black)

$$r_{W,\tau}(p) = r_{\tau}^{W}(p) + c_{\tau}^{W}$$

$$r_{B,\tau}(p) = r_{\tau}^{B}(p) + c_{\tau}^{B}.$$
(5)

Illustration of white's reward function

Left: white (1, 3), (0, 5), black (0, 0). Middle: white (0, 2), (0, 6), black (1, 7). Right: white (6, 6), (1, 7), black (8, 8).

- Pruning: Keep promising children
- Min-Max principle: Take into account the opponent's move

$$a^{*} = \max_{a \in A(s)} \min_{b \in A(s(a))} r(a, s) - r(b, s(a))$$
(6)

 Back-propagated value: Immediate reward or the official game result (1 win, 0 draw, -1 lose)

- Monte Carlo Tree Search
 General Approach
 UCT Algorithm
- Immediate RewardProblem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results

5 Conclusion

Image: A image: A

- ∢ ≣ ▶

Implementation - UCT

```
def UCT(rootstate, itermax, verbose=False):
    """ Conduct a UCT search for itermax iterations starting from rootstate.
        Return the best move from the rootstate.
    .....
    rootnode = game node.GameNode(state=rootstate)
    for i in range(itermax):
        node = rootnode
        state = rootstate.clone()
        # Select
        while node.untried moves == [] and node.child nodes != []: # node is fully expanded and non-terminal
            node = node.UCT_select_child()
            state.do_move(node.move)
        # Expand
        if node.untried_moves != []: # if we can expand (i.e. state/node is non-terminal)
            m = random.choice(node.untried moves)
            state.do move(m)
            node = node.add_child(m, state) # add child and descend tree
```

э.

《曰》《聞》《臣》《臣》

Implementation - UCT

Rollout

- # OpenAI Go board has its maximum limit of moves as 4096
- # state.get_moves() always contains -1
- while not(state.py_pachi_board.is_terminal) and state.nbmoves < 4096 and len(state.get_all_moves()) > 1: state.do_move(random.choice(state.get_all_moves()), update=False)

Backpropagate

while node is not None: # backpropagate from the expanded node and work back to the root node node.update(state.get_result(node.player_just_moved)) # state is terminal. node = node.parent_node

return sorted(rootnode.child_nodes, key = lambda c: c.visits)[-1].move # return the move that was most visited

э

(日) (同) (三) (三)

Image: A image: A

- ∢ ≣ ▶

In case of non-captures, the influence can be updated easily. This is done in *get_immediate_reward_aux* in *board.py*.

- Monte Carlo Tree Search
 General Approach
 UCT Algorithm
- Immediate RewardProblem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- 4 Experiments and Results

5 Conclusion

Which boundary to use? Empty or adversarial? Compared with the official game result on 1000 games and got similar performance.

 \Rightarrow We use the empty boundary in the following.

	Scenario 1	٦
Player A	Random strategy	
Player B	UCT strategy: 1000 iterations, without pruning, delayed reward	
Wins A/B/draws	2/97/1	

The default UCT strategy is better than the random strategy.

	Scenario 2
Player A	UCT strategy: 10 iterations, without pruning, delayed reward
Player B	UCT strategy: 10 iterations, without pruning, immediate reward
Wins A/B/draws	59/40/1

The delayed reward is slightly better than the immediate reward.

	Scenario 3	
Player A	UCT strategy: 100 iterations, without pruning, delayed reward	
Player B	UCT strategy: 100 iterations, with pruning, $\epsilon=0$, delayed reward	
Wins A/B/draws	0/100/0	
Scenario 4		
Player A	UCT strategy: 100 iterations, without pruning, immediate reward	
Player B	UCT strategy: 100 iterations, with pruning, $\epsilon=0$, immediate reward	
Wins A/B/draws	0/100/0	

Choosing the optimal action is better than without pruning.

	Scenario 5
Player A	UCT strategy: 100 iterations, with pruning, ϵ =0, delayed reward
Player B	UCT strategy: 100 iterations, with pruning, $\epsilon=0$ and min-max, delayed reward
Wins A/B/draws	19/80/1

Considering the min-max principle really boosts the performance.

	Scenario 6	
Player A	UCT strategy: 10 iterations, with pruning, $\underline{\epsilon=0}$, delayed reward	
Player B	UCT strategy: 10 iterations, with pruning, $\epsilon=0.5$, delayed reward	
Wins A/B/draws	75/25/0	
	Scenario 7	
Player A	UCT strategy: 100 iterations, with pruning, $\underline{\epsilon=0}$, delayed reward	
Player B	UCT strategy: 100 iterations, with pruning, $\underline{\epsilon=0.5}$ delayed reward	
Wins A/B/draws	55/45/0	
	Scenario 8	
Player A	UCT strategy: 10 iterations, with pruning, $\underline{\epsilon=0}$, the delayed reward	
Player B	UCT strategy: 10 iterations, with pruning, $\epsilon = 0.25$, delayed reward	
Wins A/B/draws	64/36/0	
	Scenario 9	
Player A	UCT strategy: 100 iterations, with pruning, $\epsilon=0$, delayed reward	
Player B	UCT strategy: 100 iterations, with pruning, $\underline{\epsilon=0.125}$, delayed reward	
Wins A/B/draws	49/51/0	
Scenario 10		
Player A	UCT strategy: 10 iterations, with pruning, $\underline{\epsilon=0}$, delayed reward	
Player B	UCT strategy: 10 iterations, with pruning, $\underline{\epsilon=0.125}$, delayed reward	
Wins A/B/draws	63/37/0	

æ

- 4 回 🕨 🔺 臣 🕨 🔺 臣 🕨

Experiments and Results

A (UCT epsilon = 0) vs B (UCT epsilon = 0 ~ 1)

æ

< □ > <

- Monte Carlo Tree Search
 General Approach
 UCT Algorithm
- Immediate RewardProblem Setting
 - Variants
- Implementation
 - Code Structure
 - Optimization
- ④ Experiments and Results

5 Conclusion

- Simulate the game of Go in the OpenAI Gym.
- From understanding MCTS to actually implementing it. Data structure.
- Experiments are time-consuming (python vs. C++), especially when the min-max principle is considered. (Impossible when min-max level > 2). Ideally, we'd like to have more iterations, otherwise hard to draw conclusion.

- Benefits of the immediate reward: Pruning and the min-max principle boost the performance in general.
- Drawbacks of the immediate reward: The optimal action might be eliminated by pruning. Very slow. Even slower with the min-max principle.
- More iterations will be needed as ϵ grows.
- The choice of a reasonable boundary does not have much influence on the performance.
- Future work: The number of iterations fixed → Time budget fixed. (The min-max level can be studied under a fixed time budget.) Optimization with parallel computing. Try other variants combined with the immediate reward.