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In a Nutshell

We present the variational methods for inference in
graphical models, a class of approximation techniques
arising from the calculus of variations and convex
analysis to the optimization-based formulations of
problems. We study and build on existing links be-
tween variational analysis and exponential families.
Based on these basic links, we present different for-
mulations for variational inference.

Motivation

Probabilistic inference consists of deducing and comput-
ing properties including marginal probabilities or con-
ditional probabilities of an underlying distribution rep-
resented as a graphical model. For graphs with simple
structure such as trees, the inference problem can be
exactly solved by message-passing algorithms. However,
the time complexity will also be increased to be exponen-
tial in the size of the maximal clique in the junction tree,
which makes the exact computation intractable. Thus,
a variety of approximation procedures have been devel-
oped and studied. One of the fundamental approaches
is to design algorithms involving Monte Carlo methods,
referred as Markov Chain Monte Carlo (MCMC). The
idea is simply sampling a Markov Chain that converges
to the distribution of interest. These approaches possess
theoretical guarantee and simple implementation. Nev-
ertheless, sampling methods can be very slow to converge
and lack stopping criterion [1].
An alternative methodology for statistical inference is
based on variational methods. The general idea of this
approach is to express an intractable quantity as the
solution of an optimization problem, then relaxing the
optimization problem can simplify the original problem.
Various manners of relaxing the optimization problem,
approximating either the objective function or the set
over which the optimization takes place, lead to differ-
ent formulations of variational inference, including mean
field, loopy sum-product or belief propagation, struc-
tured mean field etc..

Fundamental Theorem for Inference

Assume that the distribution of interest p is in an expo-
nential family qθ(x) = exp(θTφ(x) − A(θ)) represented
as a graphical model G. The convexity of the log par-
tition function A provides the following connection be-
tween A and its conjugate dual function A∗

•The log partition function has the variational
representation

A(θ) = sup
µ∈M

(θTµ− A∗(µ)), (1)

whereM is the marginal polytope.
•For all θ, the supremum of this equation is attained
uniquely at the vector µ ∈Mo specified by the
moment matching condition

µ = Eθ[φ(x)], (2)
which is the goal of inference.

Main difficulties:
•The nature of the constraint setM.
•The lack of an explicit form for the dual function A∗.

Loopy Belief Propagation

•ReplaceM by a larger set L, the set of locally
consistent marginal distributions
L(G) = {τ ≥ 0 |

∑
xi
τi(xi) = 1, ∀i ∈ V and∑

x′j

τij(xi, x′j) = τi(xi) ∀xi
∑
x′i

τij(x′i, xj) = τj(xj) ∀xj

∀(i, j) ∈ E} (3)
•Replace A∗ by the negative Bethe entropy
approximation
−A∗(τ ) = HBethe(τ ) =

∑
i∈V

Hi(τi)−
∑

(i,j)∈E
Iij(τij). (4)

•By combining the above two ingredients, 1 becomes
the Bethe variational problem (BVP)

max
τ∈L(G)

θTτ +
∑
i∈V

Hi(τi)−
∑

(i,j)∈E
Iij(τij). (5)

•By writing its optimal condition, we obtain the
sum-product updates.

Mean Field Methods

• Idea. Limit the optimization in a tractable subset of
distributions in such a way thatM and A∗ are easy
to characterize.

•Tractable subgraph. A subgraph F of the graph
G is tractable if it is feasible to perform exact
calculations over it.

•Naive mean field algorithm. In this case, F is
the fully disconnected subgraph, which contains all
the vertices but none of the edges.
For the Ising model, the sufficient statistics are
(xi, i ∈ V ) and (xixj, (i, j) ∈ E). The associated
mean parameters are

µi = E[Xi], µij = E[XiXj]. (6)
And we can now compute the explicit form ofM and
A∗.
MF (G) = {µ ∈ R|V |+|E| | 0 ≤ µi ≤ 1 ∀i ∈ V, and

µij = µiµj ∀(i, j) ∈ E}. (7)
And
A∗F (µ) =

∑
i∈V

[µi log µi + (1− µi) log(1− µi)]. (8)

Then we can optimize the approximate problem and
obtain the following update

µi← σ(θi +
∑

j∈N(i)
θijµj). (9)

•Structured mean field. More specific and
structural choice of subgraph F leads to structured
mean field.

Simulation and Results

We compare different methods for Ising model on a
graph G = (V,E) consisting of the densities
pθ(x) = exp(

∑
i∈V

θixi +
∑

(i,j)∈E
θijxixj − A(θ)), (10)

with X a binary random variable. For simplicity, we
suppose θi = θij = θji := θ in all our simulations, but
our method is not limited to such case.
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Figure: Gibbs sampling, mean field and loopy belief propagation for
θ = 0.1, 0.5 and 0.9
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Figure: Convergence of A. Top: mean field method; Bottom: loopy
belief propagation. From left to right: θ = 0.1, 0.5 and 0.9.

Conclusion

Variational methods can be successfully applied to Ising
model and provide an efficient computation of marginal
probability in practice. Besides the probabilistic infer-
ence problem, it can also be used to solve learning prob-
lems, under a setting of Bayesian inference, where pa-
rameters are viewed as random parameters [2].
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