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Abstract

In the paper "Statistical and computational trade-offs in estimation of sparse princi-
pal components" by Wang, Tengyao, Quentin Berthet, and Richard J. Samworth,
the authors managed to prove that under some widely-believed assumptions from
computational complexity theory, there is a fundamental trade-off between sta-
tistical and computational performance in the problem of finding good Sparse
PCA estimators. In order to prove this, they introduced a class of general and
robust conditions called Restricted Covariance Concentration (RCC) condition
on probability distributions. For models satisfying these conditions, the authors
gave a Sparse PCA estimator that is computable in randomised polynomial time.
This estimator has good theoretical performance which just has a small factor of
difference compared to the minimax rate of convergence. Finally, they showed that
this small factor is fundamental and this trade-off is inevitable if the Planted Clique
problem is hard (e.g. NP-hard).

1 Introduction

In this article, we give some review notes for the paper "Statistical and computational trade-offs
in estimation of sparse principal components" by Wang, Tengyao, Quentin Berthet, and Richard J.
Samworth [7]. The paper is published in 2016. It introduced some recent research on Sparse Principle
Component Analysis (Sparse PCA), which is a popular approach to remedy the inconsistency of
ordinary PCA estimator in high-dimensional settings. We first list the main points made in the paper to
briefly introduce its general ideas. Then we give some important definitions and theorems introduced
and proven by the authors, along with some of our comments. We also give some experimental results
with some remarks.

2 Overview

Some main points made in the paper are listed as follows:

1. Classical PCA breaks down in some high-dimensional settings [5];

2. Sparse PCA can overcome this and gives additional interpretability;

3. Sparse PCA has gained high popularity and many different estimators are proposed;

4. Some of these estimators have good theoretical properties, e.g. attain the minimax rate of
convergence [3] [6];

5. But these estimators are not computable in polynomial time;

6. One main question treated in the paper: Does there exist an estimator that is computable in
(randomised) polynomial time and that attains the minimax rate of convergence?



7. Some studied this problem by considering the “Planted Clique” problem, but their approach
was not suitable for sparse PCA; [1] [2]

8. One first contribution of the paper is to introduce the Restricted Covariance Concentration
(RCC) condition, which is satisfied by sub-Gaussian distributions;

9. There exists an estimator v̂SDP that is computable in polynomial time and has a worst case
performance close to the minimax rate of convergence (by a factor of

√
k, where k is the

level of sparsity);
10. The main result of the paper: Assuming Planted Clique hypothesis, there exists a funda-

mental trade-off between statistical and computational efficiency in the estimation of sparse
principal components in an effective sample size regime;

11. Statistical and computational trade-offs have also been studied in many different domains
and will be a key challenge for theoreticians in the coming years.

Now for each point, we give more details and recall some important definitions and propositions. In
most cases, we will not go into the details of the proofs.

2.1 Classical Principle Component Analysis

(Point 1)

Principle Component Analysis (PCA) is one of the oldest and most widely-used dimension reduction
devices in statistics. It is mathematically defined as an orthogonal linear transformation that projects
the data to a new coordinate system such that the greatest variance by some projection of the data
comes to lie on the first coordinate (called the first principal component), the second greatest variance
on the second coordinate, and so on. It consists of the following procedures.

Let X ∈ Rn×p be a data matrix with column-wise zero empirical mean, i.e.
∑n
i=1Xij = 0 for

j = 1, ..., p. Then the first principle component of X is defined as

v̂1 = arg max
‖v‖=1

‖Xv‖2 = arg max
‖v‖=1

v>Σ̂v, (1)

which is the direction with the greatest empirical variance. Here

Σ̂ =
1

n
X>X (2)

is the empirical covariance matrix. Then by a procedure similar to Schmidt normalization, we can
consider the projection of the data points onto the orthogonal complement of v̂1 and repeat the above
process and find a v̂2, then v̂3 and so on.

If we consider the first p components, this is equivalent to do an SVD for the matrix X

T = XV

where V = [v̂1 v̂2 ... v̂p] ∈ Rp×p is an orthogonal matrix and T has orthogonal columns, ordered
decreasingly according to their norms.

In this article, we will mainly consider the first principle component.

Figure 1: PCA is an orthogonal transformation.

PCA is convenient but has the following weaknesses:
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1. It is not robust to outliers. A single error in measurements can strongly impact PCA;
2. It is sensitive to the scaling of the data, and it is difficult to decide which scaling is the best;
3. It may break down in some high-dimensional settings, e.g. when p ≈ n or p� n.

Concerning the last weakness, Paul (2007) [5] considered following situation.

Let the rows in X (i.e. X1, ..., Xn) be independent Np(0,Σ) random vectors, with

Σ = Ip + θv1v
>
1

for some θ > 0 and a unit vector v1 ∈ Rp. In this case, the first principle component is v1 and
λ1(Σ) = 1+θ, λ2(Σ) = 1. Thus the difference between the largest and the second largest eigenvalue
is θ = λ1(Σ)− λ2(Σ). The classical PCA estimate would be v̂1, the leading unit eigenvector of the
empirical covariance matrix (2). However, in the high-dimensional setting where p = pn is such that
p/n→ c ∈ (0, 1), Paul showed that

|v̂>1 v1|
a.s.→

{√
1−c/θ2
1+c/θ , if θ >

√
c,

0, if θ ≤
√
c,

which means that

v̂1 is inconsistent as an estimator of v1 in this asymptotic regime.

2.2 Sparse PCA

(Points 2,3)

To remedy this inconsistency, sparse PCA has been proposed. In the simplest case, v1 is assumed to
be in the k-sparse unit Euclidean sphere in Rp, given by

B0(k) = {u ∈ Rp : ‖u‖0 ≤ k, ‖u‖2 = 1}.

Then the first k-sparse principle component is given by

v̂kmax ∈ arg max
u∈B0(k)

u>Σ̂u. (3)

We notice that the only difference between this definition and that in (1) is the constraint ‖u‖0 ≤ k.
This constraint is quite essential. As the number of non-zero terms in v̂kmax is bounded by k, this
estimator is likely to be more robust in high-dimensional settings.

Given this definition, several questions come naturally in mind:

1. Does this estimator have good theoretical properties?
2. How do we even measure the performance of this estimator?
3. Is it easy to compute v̂kmax?

2.3 Theoretical properties of sparse PCA estimators and minimax rate of convergence

(Points 4,5,6)

To evaluate the theoretical properties of sparse PCA estimates, one common performance measure in
the literature is whether the estimator attains the minimax rate of convergence.

For a class P of distributions and a loss function L(v1, v̂), we can consider the minimax rate defined
by

inf
v̂

sup
P∈P

EP [L(v1, v̂)]

where v̂ runs over all possible estimators. In [6], Vu and Lei showed that for a certain class Pp(n, k)
of sub-Gaussian distributions and in a particular asymptotic regime, one has

inf
v̂

sup
P∈Pp(n,k)

EP [1− v>1 v̂] � k log p

n
. (4)
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Here "�" means asymptotic equivalence.

We recall that a random vector X ∈ Rp is said to be sub-Gaussian if

E[eu
>X ] ≤ eσ

2‖u‖2/2

for any u ∈ Rp and some σ ∈ R.

It is also shown in [6] that v̂kmax attains the minimax rate of convergence in (4), which seems to give a
satisfying answer to the question of sparse PCA estimation.

However, existing sparse PCA estimators that attain the minimax rate of convergence have one
common unsettling feature: they are not computable in polynomial time. For example, to solve
(3), one may have to test all

(
p
k

)
possible choices for the non-zero terms in v̂kmax, which easily becomes

infeasible when p and k increase even a little bit.

So an important question is addressed by the authors of the paper:

Is it possible to find an estimator of v1 that is computable in (randomised) polynomial time, and that
attains the minimax optimal rate of convergence when the sparsity of v1 is allowed to vary with the
sample size?

Following this question, we now introduce the main approach of the paper.

2.4 Restricted Covariance Concentration

(Point 8)

The notion of Restricted Covariance Concentration (RCC) condition is an important contribution
of this paper. This condition is satisfied by all Gaussian and sub-Gaussian distributions, which are
the main classes considered in the literature. RCC turns out to be very convenient when analyzing
convergence rates in sparse PCA.

Let’s first introduce some notations. We consider the class P of the distributions P on Rp such that
EP (X) = 0 and that the covariance matrix Σ(P ) of P is finite. Let λ1(P ), λ2(P ), ..., λp(P ) be the
eigenvalues of Σ(P ) in decreasing order. When λ1(P ) > λ2(P ), the first principle component v1(P )
is well-defined up to sign. At last, the data matrix X ∈ Rn×p and any estimator of v1 are defined in a
conventional way.

As for the performance measure of the estimators, the authors adopted the following loss function

L(u, v) :=
√

1− (u>v)2.

To define the RCC condition, we need to introduce the directional variance of P along a unit
vector u ∈ Rp given by V (u) := EP (u>X1)2 = u>Σu and its empirical counterpart V̂ (u) :=

n−1
∑n
i=1(u>Xi)

2 = u>Σ̂u.

Restricted Covariance Concentration condition. For l ∈ {1, ..., p} and C > 0 we say P ∈
RCCp(n, l, C) if

P

{
sup

u∈B0(l)

|V̂ (u)− V (u)| ≥ C max

(√
l log(p/δ)

n
,
l log(p/δ)

n

)}
≤ δ (5)

for any δ > 0.

Then Proposition 1 of the article shows that all Gaussian and sub-Gaussian distributions satisfy this
condition with some specific parameters.

After introducing the RCC condition, the authors consider the following classes of distributions:

Pp(n, k, θ) := {P ∈ RCCp(n, 2, 1) ∩ RCCp(n, 2k, 1) : v1(P ) ∈ B0(k), λ1(P )− λ2(P ) ≥ θ}

The above classes can be considered as a generalization of the distribution classes (e.g. sub-Gaussian
distributions) considered in other articles.
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Then just as what Vu and Lei showed in [6] for sub-Gaussian distributions, the authors showed in
Theorems 2 and 3 that, under some mild conditions on the parameters, v̂kmax attains the minimax rate
of convergence for distributions in Pp(n, k, θ) which is asymptotically equivalent to√

k log p

nθ2
. (6)

Notice that here the v̂kmax is defined as

v̂kmax := sargmaxu∈B0(k)
u>Σ̂u (7)

where sargmax denotes the smallest element of the argmax in the lexicographic ordering. In this way
v̂kmax is well-defined and is guaranteed to be a measurable function on Σ̂.

2.5 Semidefinite relaxation estimator v̂SDP

(Point 9)

As discussed before, v̂kmax may be very difficult to compute. Thus the authors proposed some
relaxation to obtain an estimator that is computable in polynomial time. They also gave Algorithms 1
and 2 for computing this estimator v̂SDP.

As the main difficulty in (7) is the constraint u ∈ B0(k), one can replace this constraint by applying
some relaxation. Let M be the set of all p × p non-negative definite real symmetric matrices,
M1 := {M ∈M : tr(M) = 1} andM1,1(k2) := {M ∈M1 : rank(M) = 1, ‖M‖0 = k2}. One
observes that

max
u∈B0(k)

u>Σ̂u = max
u∈B0(k)

tr(Σ̂uu>) = max
M∈M1,1(k2)

tr(Σ̂M).

As the two conditions in the definition of M1,1(k2) are not convex, we can adopt the standard
semidefinite relaxation approach (i.e. dropping the rank constraint and replace the `0 norm by the `1
norm) and consider the problem

max
M∈M1

tr(Σ̂M)− λ‖M‖1. (8)

Now we have a convex optimisation problem and we can then apply Algorithm 1 in the paper
to output an estimator v̂SDP. The most important step in Algorithm 1 is Step 2: For f(M) :=

tr(Σ̂M) − λ‖M‖1, compute a M̂ ε such that f(M̂ ε) ≥ maxM∈M1 f(M) − ε. The paper gives
Algorithm 2 to implement this step. The key point of Algorithm 2 is that the optimisation problem in
Step 2 can be rewritten in a saddlepoint formulation:

max
M∈M1

tr(Σ̂M)− λ‖M‖1 = max
M∈M1

min
U∈U

tr((Σ̂ + U)M)

where U := {U ∈ Rp×p : U> = U, ‖U‖∞ ≤ λ}.

If we take λ = 4
√

log p
n and ε = log p

4n , the overall complexity of Algorithm 1 and Algorithm 2 is
given by

O(max(p5,
np3

log p
)),

which is indeed polynomial.

As for the theoretical property of v̂SDP, Lemma 4 and Theorem 5 show that, under some mild

assumptions on the parameters and taking λ = 4
√

log p
n and ε = log p

4n as above, the worst case risk of
v̂SDP for distributions in the class Pp(n, k, θ) is bounded by

min

{
(16
√

2 + 2)

√
k2 log p

nθ2
, 1

}
which is

O

(√
k2 log p

nθ2

)
.
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We notice that this quantity only differs from (6) by a factor of
√
k.

However, the authors showed that in some asymptotic regime, this gap of
√
k is essential and cannot

be improved in the case where the estimators are computable in polynomial time, assuming that the
Planted Clique problem is hard.

2.6 Planted Clique problem

(Points 7,10)

The authors in the paper used a polynomial time reduction from the Planted Clique problem to the
sparse principle component estimation problem to prove that, if Planted Clique is hard, then sparse
PCA estimation problem is hard too. They claimed that any randomised polynomial time algorithm
with a faster rate of convergence could be adapted to solve instances of the planted clique problem.
So in this section, we will talk about what the Planted Clique problem is.

A (undirected) graph G is defined to be the ordered pair (V,E) where V is a countable set and
E ⊂ {e ⊂ V : |e| = 2}. A clique C is a subset of V such that {x, y} ∈ E for all distinct x, y ∈ C.
The problem of finding a clique of maximum size in a given graph G is known to be NP-complete [4].

An easier problem called Planted Clique only consider randomly generated input graphs with a clique
“planted” in. A more formal formulation of this problem is given in the following.

Let Gm denote the set of all undirected graphs with m vertices. Let Gm,κ be a distribution on Gm
constructed by first picking κ distinct vertices uniformly at random and connecting all edges (the
“planted clique”), then joining each remaining pair of distinct vertices by an edge independently with
probability 1/2.

Then the Planted Clique problem takes as input graphs randomly sampled from the distribution
Gm,κ and the goal is to find an algorithm that can locate a maximum clique Km with high probability.

When κ = κm ≥ c
√
m for some constant c > 0, there exist polynomial time algorithms solving

this problem. But below this threshold, e.g. when κ = O(m1/2−δ) for some δ > 0, many works in
the literature showed the hardness of this problem and might suggest that there is no randomised
polynomial time algorithm solving the Planted Clique problem in this regime. Thus the authors made
the following assumption:

(A1)(τ ) For any sequence κ = κm such that κ ≤ mβ for some 0 < β < 1/2 − τ , there is no
randomised polynomial time algorithm that can correctly identify the planted clique with
probability tending to 1 as m→∞.

We notice that among the assumptions (A1)(τ ) for different τ , the case with τ = 0 (i.e. (A1)(0) is
the strongest one. When τ > 0, (A1)(τ ) is weaker and thus the results relying on the correctness of
(A1)(τ ) are stronger.

From (A1)(τ ), the authors established the main result of this paper: Theorem 6. Given its importance,
we state this theorem in details.

Theorem 6. τ ∈ [0, 1/6), assume (A1)(τ), and let α ∈ (0, 1−6τ1−2τ ). For any n ∈ N, let (p, k, θ) =

(pn, kn, θn) be parameters indexed by n such that k = O(p1/2−τ−δ) for some δ ∈ (0, 1/2 − τ),
n = o(p log p) and θ ≤ k2/(1000p). Suppose further that

k1+α log p

nθ2
→ 0

as n→∞. Let X be an n× p matrix with independent rows, each having distribution P . Then every
sequence (v̂(n)) of randomised polynomial time estimators of v1(P ) satisfies√

nθ2

k1+α log p
sup

P∈Pp(n,k,θ)

EPL
(
v̂(n)(X), v1(P )

)
→∞

as n→∞.

A more colloquial way of stating this theorem would be, if the assumption (A1)(τ ) is correct and the
number of samples n satisfies

k1+α log p

θ2
� n� p log p,
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then for the distribution class Pp(n, k, θ), the worst case risk (or rate of convergence) of any sequence
of randomised polynomial time estimators will be

�
√
k1+α log p

nθ2
,

which means that there is indeed no polynomial time estimator for v1 attaining the minimax rate of
convergence. We recall that for the class Pp(n, k, θ), the minimax rate of convergence is given by√

k log p

nθ2

as in (6), according to Theorems 2 and 3 of the paper.

The proof of Theorem 6 mainly consists of constructing a random matrix Y ∈ Rn×p with rows
belonging to the class Pp(n, k, θ) (conditionally), from a graph with a planted clique. This is a
polynomial time reduction and thus each polynomial time estimator will solve the Planted Clique
problem in polynomial time, which contradicts the hypothesis (A1)(τ ).

To summarise the results of Theorems 2, 3, 5 and 6, the authors gave the following clear and useful
table of the rate of convergence of best estimator in different asymptotic regimes.

We will call the three asymptotic regimes in Table 1 low, moderate and high effective sample size
regime respectively. Theorem 6 is mainly concerned with the moderate effective sample size regime,
i.e. where

k log p

θ2
� n� k2 log p

θ2
.

This fact raises the question of whether computationally efficient procedures could attain a faster rate
of convergence in the high effective sample size regime, i.e. where n� k2 log p

θ2 .

Then Theorem 7 together with Algorithm 3 of the paper give a satisfying answer to this question,
considering a subclass of Pp(n, k, θ). A variant of v̂SDP is proposed and attains the minimax optimal

rate of convergence
√

k log p
nθ2 in high effective sample size regime.

2.7 Main contributions of the paper

In our opinion, some main contributions of this paper could be listed as follows.

1. Addressed the question of computational efficiency for sparse PCA estimation;
2. Proposed a more robust condition, RRC condition, and define a class of more flexible

distribution classes Pp(n, k, θ);
3. Gave the minimax optimal rate of convergence for the class Pp(n, k, θ).
4. Studied the rate of convergence for different kinds of estimators in different asymptotic

regimes and gave a satisfying answer, namely Table 1;
5. Gave two estimators v̂SDP and v̂MSDP (and their corresponding algorithms) that are com-

putable in polynomial time and that have a computational performance close (or equal) to
the minimax rate of convergence for Pp(n, k, θ) (or its subclass);

6. Adapted existing techniques to prove the fundamental trade-off between statistical and
computational performance in sparse PCA estimation, assuming the hardness of the Planted
Clique problem.
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3 Implementation

In this section, we present our implementation for the experiments in 4 such that they can be easily
reproducible.

3.1 Environment

Our code is written in python and we use the numpy package for random data generation and matrix
manipulation and the math package for some basic computation.

3.2 Code Structure & Implementation Details

Our two core classes are namely data_generator.py and sdp_estimator.py. The former one enables us
to draw X1, ..., Xn

i.i.d.∼ Np(0,Σ), where Σ := Ip + θv1v
T
1 , given p, k, n, θ. The latter one computes

the semidefinite relaxation estimator v̂SDP by following Algorithms 1 and 2 in the paper.

In Algorithm 2, for the projection ΠM1
(A) where A is a symmetric matrix A = (Aij) ∈ Rp×p, we

need to first decompose A := PDPT for some orthogonal P and diagonal D = diag(d), where
d = (d1, ..., dp)

T ∈ Rp. This is done by doing an SVD. In the case where A is a real symmetric
matrix, the first matrix given by the SVD is exactly the P we look for. The only issue is that in the
implementation of numpy.linalg.svd, in the case where A contains negative eigenvalues, they
will be turned into positive values in the diagonal matrix and the sign of some values in the last
matrix will be changed. In other words, the diagonal matrix given by the SVD differs from the one
we want by their signs. This is solved by simply checking the sign between the first matrix and the
last one given by the SVD. In Step 3 in Algorithm 1, we adopt a simple implementation, which is
using numpy.linalg.eig for the sake of simplicity and clarity. Although other methods such as the
Lanczos method would require less operations, we note that this would not decrease the overall time
complexity.

In the main.py class, we combine the two core classes to compute the loss between a generated v1 and
a semidefinite estimator. We follow the definition of the loss function in the paper. L(v1, v̂

SDP) =

{1− (vT1 v̂
SDP)2} 1

2 . By iterating this process a number of times, we compute the mean loss.

4 Experiments and Results

In this section, we first repeat the numerical experiments done in the paper and confirm their results.
Then, we try a slightly different setting that still lies in the context of the theorems in the paper.

4.1 Repeated Experiments

To make this review self-contained, we recall the content of the experiments done in the paper as the
pseudo-code described as follows.

• Choose p ∈ {50, 100, 150, 200}. k =
⌊
p1/2

⌋
.

• For νlin = 1 to 1000, n = νlink log p (resp. n = νquadk
2 log p) do

– For irep = 1 to Nrep = 100 do
∗ Generate v1 by setting v1,j := k−1/2 for j = 1, ..., k and v1,j := 0 for j =
k + 1, ..., p.

∗ Draw X1, ..., Xn
i.i.d.∼ Np(0,Σ), where Σ := Ip + θv1v

T
1 and θ = 1.

∗ Compute the semidefinite estimator v̂SDP of the data matrix X := (X1, ..., Xn)T .
∗ Compute the loss L(v1, v̂

SDP).
– Compute the mean loss.

• Report the mean losses on a chart.

In Figure 2, we show the average loss of the estimator v̂SDP over Nrep = 100 repetitions. The top
left panel is against νquad := nθ2

k log p . The top right one is against νlin := nθ2

k2 log p . To examine their tail
behaviour, we replot them under logarithmic scales in the bottom left and bottom right panels.
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Figure 2: Average loss of the estimator v̂SDP over Nrep = 100 repetitions against effective sample
sizes νquad (top left) and νlin (top right). The tail behaviour under both scalings is examined under
logarithmic scales in the bottom left and bottom right panels. (As we repeat the experiments, we try
to organize in the same way. This caption is taken from the paper.)

Our results are very similar to those in the paper. Again, the top left panel shows a sharp phase
transition for the mean loss, as predicted by Theorems 5 and 6 of the paper. The top right panels

show that in the high effective sample size regime, v̂SDP converges at rate
√

k log p
nθ2 , which is the same

as that of the modified semidefinite relaxation estimator in Theorem 7 of the paper.

Due to the fact that the experiments are relatively time-consuming, we choose only to carry out the
simulations for the setting where p = 50. Just to give an idea, for p = 50, it takes approximately three
hours to obtain 30 data points (mean losses, each with 100 repetitions). We expect the experiments of
p = 100 to take around a day.

4.2 Slightly Different Experiments

In this subsection, we vary the value of the parameter θ in the expressions of the covariance matrix

Σ := Ip + θv1v
T
1 .

In the case where θ = 5, the gap between the first eigenvalue and the second one is greater than that
of θ = 1. We expect the semidefinite estimator to be closer to the first eigenvector, i.e. the loss of the
semidefinite estimator to be smaller. Results shown in Figure 3 correspond to our expectation. We
observe that the curves of θ = 5 have a similar shape to those of θ = 1 and that the transition phase
has almost disappeared, as predicted by Theorem 5 of the paper.

5 Conclusion

We gave an overview of the paper "Statistical and computational trade-offs in estimation of sparse
principal components". We listed the main points made in the paper and we discussed each point in
greater detail. After the discussion, we listed, from our point of view, the main contributions that the
authors of the paper made. Then we implemented the algorithms proposed in the paper and carried
out some numerical experiments. The results correspond very well to the theoretical analysis.
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Figure 3: Average loss of the estimator v̂SDP over Nrep = 100 repetitions against effective sample
sizes νquad (top left) and νlin (top right) in two different settings: θ = 1 (blue) and θ = 5 (red). The
tail behaviour under both scalings is examined under logarithmic scales in the bottom left and bottom
right panels.

All of the statistical and computational analyses in the paper are performed over the the classes of
distributions Pp(n, k, θ) underpinned by the Restricted Covariance Concentration condition. Further
research could be conducted to study other classes of distributions.

Epilogue

This is the first time that we two read an article in statistics on a state-of-the-art subject in detail. It
was really not obvious at the beginning. We did not understand the notations and were not familiar
with this domain, etc. But after reading it 4 or 5 times, the structure and the logic of the paper became
clearer and clearer to us and we became more and more confident. So we would like to say that
we are happy to have such experience of mini research in statistics. This will help us to be more
confident when possible challenges in this domain occur to us in the future.
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