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Abstract

The data challenge proposed by Oze Energies aims at introducing new statis-
tical models to predict future energy consumption, which is essential to obtain op-
timized procedures to simultaneously reduce costs and limit greenhouse gas emis-
sions. Various models and methods have been discussed in the literature. We chose
among them a linear state-space model with hidden states, and more precisely a
Kalman filter and smoother, in combination with the Expectation-Maximization
algorithm to estimate the parameters. We derived variants of strategies to adapt
to our specific use case. By applying these methods to real-world data, validating
on test dataset and visualizing the curves, we justified the robustness of our choice.

1 Introduction

In Europe, buildings account for 40% of total energy use and 36% of total CO2 emis-
sion according to [3]. The prediction of energy use in buildings is therefore necessary
to improve the utilization rate of energy, with the aim of achieving energy conservation
and reducing anti-environmental impact. However, the energy system in buildings is
complex, as the energy types and building types vary one with another. In the pre-
vious surveys, the main energy forms considered are heating/cooling load, hot water
and electricity consumption. The most frequently considered building types are office,
residential and engineering buildings, varying from small rooms up to big estates. In
view of different geographical and environmental conditions, the energy behavior of a
building can be influenced by many factors, such as weather conditions, especially the
dry-bulb temperature, the building construction and thermal property of the physical
materials used, the occupancy and their behavior, sub-level components such as light-
ing, HVAC (Heating, Ventilating, and Air-Conditioning) systems, their performance
and schedules. All these factors lead the prediction of energy consumption for long
term to a very difficult problem.

In recent years, various numerical models for describing thermal characteristics
of building components have been investigated and developed. These models are ex-
tensively used in prediction and optimization of building energy consumption. For
instance, [4, 10] survey diverse models and methods, by comparing explicitly their
advantages and insufficiencies. However, the majority of these models provide only a
short-term vision and low robustness. The efficiency of models in terms of forecasting
is relatively adequate in some scenarios, but could be largely improved in certain other
situations. Among all the related work, Thomas Berthou’s thesis [1] has offered a com-
prehensive and systematic comparison between various models. It turns out that the
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state-space model shows a potential and competitive performance. The main advan-
tages of this model is its tolerance with noise and well studied theoretical guarantees,
such as confidence intervals.

In this report, we will investigate a linear dynamic model arising from the state-
space model, present the theoretical results with time series analysis tools and study
its prediction capacity and robustness in terms of building energy consumption. Our
contributions are two folds. On one hand, we have implemented an expectation-
maximization algorithm for the parameters estimation of the state space model. On
the other hand, we have derived a variant model with is more adaptive for seasonal
or periodic data, such as energy consumption in buildings. Thus, the report will be
organized as follows. We begin with presenting the generic dynamic model that will be
used to forecast the energy consumption. Then, we concentrate on the theoretical tools
in order to estimate the parameters in the model. Based on the theoretical results, we
apply the original method to the problem of the prediction of energy consumption, as
well as a variant model which turns out to be more adaptive to the problem by taking
the periodicity information into account. We compare the prediction performance and
robustness for each model.

2 Problem and Models

The energy consumption is represented by the observations received from sensors in
buildings characterizing thermal behaviors, in the form of a time series. We refer
to these observations as Y1, Y2, . . . , Yn in Rd+, possibly multivariate random variables.
We have also access to some exogenous data, which describes weather conditions or
other environmental factors. We refer to these observations as U1, . . . , Un in Rp. The
objective is to forecast the future energy consumption Yn+1, . . . , Yn+N for some large
integerN , given the historical thermal observations Y1, . . . , Yn and the whole exogenous
observations U1, . . . , UN . A natural and simple approach is to reformulate the problem
as a regression problem

Yt+1 = f(Yt, . . . , Yt−k, Ut+1, . . . , Ut+1−k′), (1)

where we try to express the energy use Yt+1 at time t + 1 as a function of some
fixed length of historical data Yt−k, . . . , Yt and Ut+1−k′ , . . . , Ut+1. Generally this model
performs well for short-term prediction, while it suffers accumulated prediction errors
and noise for long-term prediction as it uses predicted Ŷt+1 to continue predicting
energy use at further time steps. For instance, if one uses a deep network to learn
function f , the model may easily be overfitted and conduct to unfavorable prediction.
However, if the model manages to characterize the variation of dynamics between time
steps as well as resist to noise, then it can make the prediction of the denoising data
instead of the noisy one.

Based on this notification, we consider the linear Gaussian state space model,
which takes into account different types of noise within the data, observational noise
and dynamic noise. Different from the dynamic noise, which enter the dynamics of the
process, observational noise appears to the measurements as an additive effect. The
state space model characterize the observations via a hidden chain and consists of a
state equation describing dynamics of a process, and an observation equation modeling
the measurement phase.
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2.1 Linear State Space Model

The general linear Gaussian state space model can be represented as follows, with two
equations as we explained above,{

Xt+1 = AtXt +BtUt + εt

Yt = CtXt +DtUt + ηt
(2)

where

• the error terms εt ∼ N (0, Pt) and ηt ∼ N (0, Qt) are two independent vector-
valued i.i.d. Gaussian sequences.

• X represents state vector sequence, which is not observable.

• X0 is assumed to be N (µ0,Σ0), which is independent of εt and ηt.

• θt = (At, Bt, Ct, Dt, Pt, Qt, µ0,Σ0) are parameters of the model.

As all variables are Gaussian, an obvious but useful remark is that all joint or condi-
tional distributions of this model are also Gaussian. Thus they are fully determined
by their mean vector and covariance matrix.

In order to estimate the parameters of this model, one can maximize the log-
likelihood of the observations Yt using unconstrained optimization methods such BFGS
[6]. However, the expression of the log-likelihood is difficult to compute as well as its
derivative. Noticing that the complete log-likelihood is much easier to compute, we
consider another method called Expectation-Maximization (EM) algorithm.

2.2 Expectation Maximization Algorithm

EM algorithm is used to solve the general optimization problem, especially the equa-
tions cannot be resolved directly. In this paragraph, we will present the problem from
a general point of view, and then applied EM algorithm to the state-space model.

2.2.1 Problem statement

we use here the definition described in [2]. Given a σ-finite measure λ on (X, χ), we
consider a family {f(·; θ)}θ∈Θ of non- negative λ-integrable functions on X. This family
is indexed by a parameter θ ∈ Θ, where Θ is a subset of Rdθ (for some integer dθ).
The task under consideration is the maximization of the integral

L(θ) =

∫
f(x; θ)λ(dx) (3)

with respect to the parameter θ. f(·; θ) might be thought as unnormalized probability
density with respect to the measure λ. Thus L(θ) is the normalizing constant for
f(·; θ). f(·; θ) is relatively a simple function on θ while L(θ) usually involves high
dimensional integration and is therefore sufficiently complex to prevent the use of
simple maximization approaches. we remark that it is not required that L(θ) be a
likelihood, as any function satisfying 3 is a valid candidate.

In the following, we limit to a statistical setting. f(·; θ) is thus associated to a den-
sity function p(·; θ) defined by p(·; θ) = f(·; θ)/L(θ), and L(θ) is positive. maximizing
L(θ) is equivalent to maximizing the log-likelihood `(θ) = logL(θ).
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2.2.2 EM algorithm

The main ingredient of the EM algorithm is an auxiliary function known as the inter-
mediate quantity. It is the family {Q(·; θ′)}θ′∈Θ of real-valued function on Θ, defined
by

Q(θ; θ′) =

∫
log f(x; θ)p(x; θ′)λ(dx) (4)

This term can be interpreted as the expectation of the function log f(X; θ) for X
distributed according to the probability density p(x; θ′) with respect to the parameter
θ′. By a simple calculation, Q(θ; θ′) can be rewritten as

Q(θ; θ′) = `(θ)−H(θ; θ′), (5)

where

H(θ; θ′) = −
∫

log p(x; θ)p(x; θ′)λ(dx) (6)

With some hypotheses on regularity and integrability, we can get the essential
result that justifies the correctness of the EM algorithm.

Theorem 2.1. Under some assumptions, for any (θ, θ′) ∈ Θ2, we have

`(θ)− `(θ′) ≥ Q(θ; θ′)−Q(θ′; θ′) (7)

EM algorithm seeks to maximize `(θ) iteratively building a sequence {θi}i≥1 of
parameter estimates given an initial guess θ0. Each iteration is broken into two steps

• Expectation step (E-step): Determine Q(θ; θ′).

• Maximization step (M-step): Choose θi+1 that maximizes the intermediate quan-
tity θi+1 = arg maxθ∈ΘQ(θ; θi).

The correctness of EM algorithm is ensured by 7. To be precise, choosing θ to im-
prove Q(θ; θi) beyond Q(θi; θi) can also improve `(θ) beyond `(θi) of at least the same
quantity.

Now that the M-step is simply the computation of the derivative of Q with respect
to θ, the main difficulty is the E-step, consisting of evaluating conditional expectations,
which is radically an inference problem. To achieve this, we consider to use Kalman fil-
ter and smoother, a powerful tool in control theory used to estimate unknown variables
for noisy ones. It can also be used in our situation, as to estimate hidden variables Xt

in 2.

2.3 Kalman Filter and Smoother

Kalman filter is an algorithm to estimate recursively the hidden states using a series
of noisy measurements observed in the past time. In contrast of Kalman filtering,
Kalman smoothing is a backward pass which calculates a better estimate of states
knowing all the measurements between the observations Y1, . . . , Yn. More specifically,
the estimations of the state vectorsXt are carried out by performing two passes through
the data:

1. a forward pass, from t = 0, . . . , n, using a recursive algorithm known as the
Kalman filter that is applied to the observed time series;

2. a backward pass from t = n, . . . , 0 using recursive algorithms known as Kalman
smoothers that are applied to the output of the Kalman filter.
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2.3.1 Kalman Filter

The idea of Kalman filter is to update our knowledge of the system each time a new
observation Yt is brought in. It can be divided into two steps: prediction and inno-
vation. These two steps calculate respectively an estimate of the state vector based
on only the past observations (predicted state estimate) and that based on all past
observations and the current observations (filtered state estimate).

In our treatment below, we define Y0:t = (Y0, . . . , Yt). We denote X̂t|t := E[Xt|Y0:t]

the filtered state estimate Xt, X̂t|t−1 := E[Xt|Y0:t−1] the predicted state estimate

of Xt and their respective associated variances Σt|t := E[(Xt − X̂t|t)(Xt − X̂t|t)
T ] =

Cov(Xt−X̂t|t), Σt|t−1 := E[(Xt−X̂t|t−1)(Xt−X̂t|t−1)T ] = Cov(Xt−X̂t|t−1) to simplify
our notation.

The idea of Kalman filter is to calculate X̂t|t and Σt|t by using X̂t−1|t−1 and Σt−1|t−1

when a new Yt is bought in. We first calculate X̂t|t−1 and Σt|t−1, which is known as
the prediction step.

X̂t|t−1 = AtX̂t−1|t−1 +BtUt (8)

Σt|t−1 = AtΣt−1|t−1A
T
t + Pt (9)

To calculate X̂t|t and Σt|t, we introduce first an important proposition in Bayesian
regression theory.

Proposition 2.1 (Conditioning in the Gaussian Linear Model). Let X and V be
two independent Gaussian random vectors with E[X] = µX , Cov(X) =

∑
X , and

Cov(V ) = ΣV , and assume E[V ] = 0. Consider the model

Y = BX + V (10)

where B is a deterministic matrix of appropriate dimensions. Further assume that
BΣXB

T + ΣV is a full rank matrix. Then

E[X|Y ] = E[X] + Cov(X,Y ){Cov(Y )}−1(Y − E[Y ]) (11)

= µX + ΣXB
t{BΣXB

T + ΣV }−1(Y −BµX) (12)

and

Cov(X|Y ) = Cov(X − E[X|Y ]) = E[(X − E[X|Y ])XT ] (13)

= ΣX − ΣXB
T {BΣXB

T + ΣV }−1BΣX (14)

From this proposition and the fact that the predictor-to-filter update is obtained
by computing the posterior distribution given Y0:t in the equivalent pseudo-model
Xt ∼ N (X̂t|t−1,Σt|t−1) and Yt = CtXt + DtUt + ηt, where ηt is N (0, Qt) distributed
and independent of Xt. In consequence, we have the filtering formula

X̂t|t = X̂t|t−1 + Σt|t−1C
T
t (CtΣt|t−1C

T
t +Qt)

−1(Yt − CtX̂t|t−1 −DtUt) (15)

Σt|t = Σt|t−1 − Σt|t−1C
T
t (CtΣt|t−1C

T
t +Qt)

−1CtΣt|t−1 (16)

However, there exists a different approach called innovation approach. It is based
on the projection theorem in a Hilbert space.
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2.3.2 Kalman Smoother

Now we consider computing the smoothed state estimate X̂t|n = E[Xt|Y0:n] and Σt|n =

Cov[Xt − X̂t|n] = E[(Xt − X̂t|n)(Xt − X̂t|n)T ] via a backward recursion. We notice
by independence that E[Xt|Y0:n] = E[E[Xt|Y0:n, Xt+1]|Y0:n] = E[E[Xt|Y0:t, Xt+1]|Y0:n],
with Xt+1 = AtXt +BtUt + εt and proposition 2.1, we have

E[Xt|Y0:t, Xt+1] = E[E[Xt|Y0:t]+Cov(Xt, Xt+1|Y0:t) Cov(Xt+1|Y0:t)
−1(Xt+1−E(Xt+1|Y0:t))|Y0:n]

E[Xt|Y0:t, Xt+1] = X̂t|t + Jt(Xt+1 − X̂t+1|t) (17)

where Jt = Σt|tA
T
t Σ−1

t+1|t.

X̂t|n = X̂t|t + Jt(X̂t+1|n − X̂t+1|t) (18)

By analogy, we get the recursion for Σt|n:

Σt|n = Σt|t + Jt(Σt+1|n − Σt+1|t)J
T
t (19)

This algorithm gives us a iterative backward recursion to compute the smoothers by
computing first the Kalman filter. It is used to update the state vectors in the EM
algorithm in each iteration, which we will present in the next section.

We can also compute the lag-one covariance smoother Σt,t−1|n := E[(Xt−X̂t|n)(Xt−1−
X̂t−1|n)T ] = Cov[Xt − X̂t|n, Xt−1 − X̂t−1|n] (defined in [9]), which will be used in EM
algorithm, thanks to the equality (17):

Σt,t−1|n = E[E[(Xt − X̂t|n)(Xt−1 − X̂t−1|n)T |Xt, Y0:n]]

= E[(Xt − X̂t|n)(E[Xt−1|Xt, Y0:t−1]− X̂t−1|n)T ]

= E[(Xt − X̂t|n)(Jt−1Xt + X̂t−1|t−1 − Jt−1X̂t|t−1 − X̂t−1|n︸ ︷︷ ︸
FYn −measurable

)T ]

= Σt|nJ
T
t−1

2.4 EM Algorithm with Kalman Smoother

In this section, we suppose the parameters are invariant with the time in our state-
space model. The observed data Y1:n = (Y1, . . . , Yn) is a subset of the not fully ob-
servable complete data (X0:n, Y1:n), where X0:n = (X0, . . . , Xn) are the unobserved
states. We assume the the joint distribution of X0:n and Y1:n, for a given parameter
θ = (A,B,C,D, P,Q, µ0,Σ0), has a probability density f(X0:n, Y1:n; θ) with respect to
the product measure λn⊗µn, which is referred to as the complete data likelihood. The
Likelihood of the observation data is obtained by marginalization as

L(Y1:n; θ) =

∫
f(x, Y1:n; θ)λn(dx) (20)

the family of probability density functions {p(·; θ)} can be interpreted as

p(X0:n|Y1:n; θ) =
f(X0:n, Y1:n; θ)

L(Y1:n; θ)
(21)

6



By abuse of notation, we denote P (·; θ) the probability density function of any variable,
given the parameter θ. We can compute explicitly P (X0:n, Y1:n; θ) in our state-space
model, since the Yt|Xt are independent

logP (X0:n, Y1:n; θ) = logP (Y1:n|X0:n; θ) + logP (X0:n; θ)

= logP (X0; θ) +

n∑
t=0

logP (Yt|Xt; θ) +

n∑
t=1

logP (Xt|Xt−1; θ)

And we have Yt|Xt ∼ N (CXt +DUt, Q), then

logP (Yt|Xt; θ) = −1

2

[
dy log(2π) + log |Q|+ (Yt − CXt −DUt)TQ−1(Yt − CXt −DUt)

]
(22)

In addition, Xt|Xt−1 ∼ N (AXt−1 +BUt−1, P ), then

logP (Xt|Xt−1; θ) = −1

2

[
dx log(2π) + log |P |+ (Xt −AXt−1 −BUt)TP−1(Xt −AXt−1 −BUt)

]
(23)

and

P (X0; θ) = −1

2

[
dx log(2π) + log |Σ0|+ (X0 − µ0)TΣ−1

0 (X0 − µ0)
]

(24)

As result,

logP (X0:n, Y1:n; θ) = K − 1

2
[log |Σ0|+ n log |P |+ (n+ 1) log |Q|

+ (X0 − µ0)TΣ−1
0 (X0 − µ0)

+

n∑
t=1

(Xt −AXt−1 −BUt−1)TP−1(Xt −AXt−1 −BUt−1)

+
n∑
t=0

(Yt − CXt −DUt)TQ−1(Yt − CXt −DUt)]

where K = −1
2 [ndy log(2π) + (n + 1)dx log(2π)]. Then the intermediate quantity is

given by
Q(θ; θi) = E[logP (X0:n, Y1:n; θ)|Y1:n, θ

i] (25)

We have finished the E-step until now. To compute θi, we need to find the maximum
point for each parameter by deriving Q(θ; θi). And we found

∂Q
∂A

= −2P−1E

[
n∑
t=1

(Xt −AXt−1 −BUt−1)XT
t−1|Y1:n

]

Âi+1 =

(
n∑
t=1

E[XtX
T
t−1|Y1:n]− B̂iUt−1E[Xt−1|Y1:n]T

)(
n∑
t=1

E[Xt−1X
T
t−1|Y1:n]

)−1

(26)

∂Q
∂B

= −2P−1E

[
n∑
t=1

(Xt −AXt−1 −BUt−1)UTt−1|Y1:n

]

B̂i+1 =

(
n∑
t=1

(E[Xt|Y1:n]− ÂiE[Xt−1|Y1:n])UTt−1

)(
n∑
t=1

Ut−1U
T
t−1

)−1

(27)
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P̂ i+1 =
1

n

n∑
t=1

(E[Xt|Y1:n]− ÂiE[Xt−1|Y1:n]− B̂iUt−1)(E[Xt|Y1:n]− ÂiE[Xt−1|Y1:n]− B̂iUt−1)T

+Âi Var(Xt|Y1:n)(Âi)T + Var(Xt|Y1:n)

−Cov(Xt, Xt−1|Y1:n)(Âi)T − Âi Cov(Xt−1, Xt|Y1:n) (28)

Ĉi+1 =

(
n∑
t=0

(Yt − D̂iUt)E[Xt|Y1:n]T

)(
n∑
t=0

E[XtX
T
t |Y1:n]

)−1

(29)

D̂i+1 =

(
n∑
t=0

(Yt − ĈiE[Xt|Y1:n])UTt

)(
n∑
t=0

UtU
T
t

)−1

(30)

Q̂i+1 =
1

n+ 1

n∑
t=0

(Yt−ĈiE[Xt|Y1:n]−D̂iUt)(Yt−ĈiE[Xt|Y1:n]−D̂iUt)
T+Ĉi Var(Xt|Y1:n)(Ĉi)T

(31)
µ̂i+1

0 = E[X0|Y1:n] (32)

Σ̂i+1
0 = E[X0X

T
0 |Y1:n]− µ̂i0E[X0|Y1:n]T − E[X0|Y1:n](µ̂i0)T + µ̂i0(µ̂i0)T (33)

We remark that

E[XtX
T
t−1|Y1:n] = Cov(Xt, Xt−1|Y1:n) + E[Xt|Y1:n]E[Xt−1|Y1:n]T

E[XtX
T
t |Y1:n] = Var(Xt|Y1:n) + E[Xt|Y1:n]E[Xt|Y1:n]T

Cov(Xt, Xt−1|Y1:n) = Cov(Xt−1, Xt|Y1:n)T

All the parameters could be totally determined if E[Xt|Y1:n], Cov(Xt|Y1:n) and Cov(Xt, Xt−1|Y1:n)
are determined. These values can be computed thanks to the Kalman smoothing.

3 Prediction of Energy Consumption

We have implemented implemented Kalman filter and smoother together with EM-
algorithm in Python. The data is provided by Oze Energies and can be found at
https://challengedata.ens.fr/en/challenge/18/oze energies optimizing energy consump
tions.html.

The goal is to predict the consumptions measured by sensors in the building to heat
and cool the air based on observations, such as internal temperature, outside temper-
ature, humidity, and building occupancy. However, the input data (observations) are
only given in an anonymous way, i.e. we do not know exactly which observation each
variable correspond to. Same goes with the output data. To make it clear, we are
given a training input file, a training output file, and a testing input file, like in most
data challenges. The performance of our model is evaluated on our prediction of the
testing input file, using a mean square error metric.

We first looked at our data and realized that there are missing values in the exoge-
nous data U , which makes them hard to be taken into account. We chose to do some
data preprocessing by applying a Kalman filter to estimate the missing values, rather
than discarding all rows with missing values.

We propose here three different strategies based on the state space model, which
reflects our track for the amelioration of the prediction performance.
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Single-regime strategy. We apply the model described previously on the training
data directly. In this strategy, we set B = 0 as it plays a similar role as D and we
consider the entire time series as one single regime.

In fact, there are parameters that need to be decided. More precisely, we tune the
dimension of the hidden state and number of iterations by splitting the training data
into two parts, one for training and one for validation, to perform validation. The
number of iterations does not have much impact if it converges. It turns out that
setting the dimension of the hidden states to 2 makes it easier to converge and yields
better results according to our experiments. Results are shown in Table 1 and Fig 1.

building state dim MSE

1 2 35693

2 2 22737

3 2 17371

4 2 48977

Table 1: Single-regime strategy: 20% of the training data used for validation, 500
iterations performed; Best results for each building.

(a) Building 1 (b) Building 2

(c) Building 3 (d) Building 4

Figure 1: Single-regime strategy: Prediction curves with confidence interval on part of the
training data.
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Multi-regime strategy. In this strategy, we take advantage of the periodicity
within the data by dividing observations into different groups according to their regime.
More precisely, we consider the following model{

Xt+1 = Aσ(t)Xt +Bσ(t)Ut + ε

Yt = Cη(t)Xt +Dη(t)Ut + η
(34)

where σ : N→ I, η : N→ J and I, J are finite sets. Here I and J describe the set of
different regimes. Regarding the parameter estimation, we use the EM algorithm to
estimate the parameters respectively in each group.

Under this framework, the hidden states are naturally divided into five regimes:
“night”, “day”, “day-to-night”, “night-to-day” and “weekend”. In practice, to achieve
a good choice of regimes, we need to choose carefully the hours for the beginning of
day or night, and also the length for the transition between two regimes. Note that
the regimes can also be learned with the training data, by looking at the peaks and
troughs. In this data challenge, we have fixed the regime period and chosen the most
appropriate regime periods for each building.

Results are shown in Table 2 and Figure 2. This strategy significantly outperforms
the single-regime strategy. Nevertheless, the method turns out to be unstable when
inadequate regime parameters are used.

building state dim day start day end night start night end MSE

1 2 8 18 21 5 8130

2 2 10 18 23 6 5323

3 2 9 18 22 5 8825

4 2 9 18 22 5 6007

Table 2: Multi-regime strategy: 20% of the training data used for validation, 500
iterations performed; Best results for each building.

Two-lag multi-regime strategy. In this strategy, we use one more historical ex-
ogenous observation for the prediction. Specifically, we replace Ut by Ũt = (Ut, Ut−1)
in the above model 34, and use the same procedures for the prediction.

Results are shown in Table 3 and Figure 3. We notice that the prediction error is
smaller than the multi-regime model.

building state dim day start day end night start night end MSE

1 2 8 18 21 5 8043

2 2 10 18 23 6 4568

3 2 8 18 22 5 6491

4 2 9 18 22 5 5032

Table 3: Two-lag multi-regime strategy: 20% of the training data used for validation,
500 iterations performed; Best results for each building.
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(a) Building 1 (b) Building 2

(c) Building 3 (d) Building 4

Figure 2: Multi-regime strategy: Prediction curves with confidence interval on part of the
training data.

4 Discussions and Conclusions

We have successfully applied a linear state-space model for the prediction of energy
consumption, by using the EM algorithm to estimate parameters. We have inves-
tigated and developed three strategies for the problem, by taking advantage of the
specific invariance and periodicity of the data. According to the peaks and troughs
in observations, we have divided observations into different groups, which leads to our
multi-regime model. It turns out that the multi-regime model outperforms the original
one, in terms of prediction error. With more historical exogenous observations, the
two-lag multi-regime model gives even higher accuracy for the prediction.

As the linear state space model performs surprisingly well, some future work can
also be considered. First, we can extend the linear model to a non-linear one, by
using extended or unscented Kalman filter [5, 7, 8] and EM algorithm for parameter
estimation. Another aspect that can be improved is the regime function σ and η, which
we have fixed the regime periods in the project. However, an adaptive learning for the
regime function can be considered to improve the performance. Besides, we have only
evaluated the two-lag multi-regime model. More historical exogenous observations can
be used in model for further comparisons. Furthermore, we have noticed that the
prediction accuracy on the test data is not as good as that on the validation data.
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(a) Building 1 (b) Building 2

(c) Building 3 (d) Building 4

Figure 3: Two-lag multi-regime strategy: Prediction curves with confidence interval on part
of the training data.

One reason is that we have prefilled the missing values in the exogenous variables,
which may lead to accumulated errors. Thus, a natural idea is to model the exogenous
observations by another state space model, and estimate the parameters simultaneously
for thermal and exogenous model.
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