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Abstract— Motion planning framed as optimisation in struc-
tured latent spaces has recently emerged as competitive
with traditional methods in terms of planning success while
significantly outperforming them in terms of computational
speed. However, the real-world applicability of recent work in
this domain remains limited by the need to express obstacle
information directly in state-space, involving simple geometric
primitives. In this work we address this challenge by leveraging
learned scene embeddings together with a generative model
of the robot manipulator to drive the optimisation process. In
addition we introduce an approach for efficient collision checking
which directly regularises the optimisation undertaken for
planning. Using simulated as well as real-world experiments, we
demonstrate that our approach, AMP-LS, is able to successfully
plan in novel, complex scenes while outperforming competitive
traditional baselines in terms of computation speed by an order
of magnitude. We show that the resulting system is fast enough
to enable closed-loop planning in real-world dynamic scenes.

I. INTRODUCTION

Motion planning is a core capability for robotic manipula-
tion tasks [1], [2] with the fundamental aim of planning
a collision-free path from the current state of an artic-
ulated configuration of joints to a predefined goal joint
or end-effector pose configuration. Sampling-based motion
planning algorithms, such as Rapidly-Exploring Random
Trees (RRT) [3] and Probabilistic Roadmap (PRM) [4],
are widely used within the robotics community as they
have well understood properties in regards to planning time
and collision avoidance. However, sampling-based methods
become increasingly intractable as the problem size increases
(i.e., Degrees-of-Freedom (DoF) of the robot, environment
complexity, and length of the path) and are also typically too
slow to be used for closed-loop planning, as any change to
the environment requires re-planning [5].

Recently, learning-based motion planning [6], [7] has
gained the attention of the robotics community with the
promise of increased computational efficiency and faster plan-
ning times. Notably, Latent Space Path Planning (LSPP) [8]
introduces motion planning via gradient-based optimisation
in the latent space of a VAE. The success rate of LSPP
is commensurate with that of commonly used sampling
and gradient-based motion planners, but with significantly
reduced planning time. By learning a structured latent space
using kinematically feasible and easily generated robot
states, a learned latent space that is optimised via activation
maximisation (AM) [9] can produce diverse and adaptive
behaviours [10]. However, LSPP relies on state-based obstacle
representation given known object shape, which does not
easily transfer to real-world environments.
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Fig. 1: Problem setup. AMP-LS generates a collision-
free trajectory via gradient-based optimisation by leveraging
scene embeddings. Our model is trained on kinematically
feasible robot joint states and synthetic point cloud of diverse
scenes. For evaluation, our method is deployed to unseen
scenes including simulated and real-world environments: (a)
Simulated static env: Novel scenes are generated by randomly
placing obstacles on a table. (b) Real-world static env: A
robot avoids the table legs to reach the pre-grasp location
of the unassembled table leg. (c) Moving Conveyor Belt env:
A robot reaches a moving target object while avoiding an
obstacle on the conveyor belt by using closed-loop planning.

To address the issues of LSPP, we introduce a method
significantly extending the prior work by incorporating a col-
lision predictor that leverages scene embeddings and efficient
collision checking, which regularises the optimisation during
planning for safe collision avoidance. We name this new
method Activation Maximisation Planning in Latent Space
(AMP-LS). Specifically, we adapt SceneCollisionNet [11],
trained on diverse synthetic point cloud data of scenes
generated with objects from ShapeNet datasets [12], for our
purpose to facilitate zero-shot transfer to unseen environments
including the real-world scenes (see Fig. 1). Due to the speed
of our approach, we also show that our method can be applied
to closed-loop settings where both the obstacles and goal
pose are moving.

The contributions of our work are threefold: (1) we present
Activation Maximisation Planning in Latent Space (AMP-
LS), which significantly extends LSPP by incorporating
a collision predictor that leverages scene embeddings and
explicit collision checking in order to reguralise optimisation
when planning for obstacle avoidance; (2) we empirically
demonstrate that our approach can be zero-shot transferred to



unseen scenes, including real-world environments, through the
use of a collision predictor that is trained on diverse synthetic
scenes; (3) we show that our method can be applied to closed-
loop settings with reactive behaviour, capable of reaching a
moving target while also avoiding a moving obstacle.

II. RELATED WORKS

Sampling-based motion planning approaches such as
RRT [3], [13] and PRM [4] are widely used to gener-
ate collision-free trajectories in robotics. PRM requires a
pre-computed roadmap; RRT often struggles to find the
solution with the shortest path. While several extensions
such as RRT* [13] and BIT* [14] have been proposed
to achieve asymptotic optimality and reduce computational
cost, these approaches typically demand many samples—a
runtime problem that compounds with increases in robot
DoF, environmental complexity, or path length [15]. Another
limitation of sampling-based motion planners is that they do
not support the real-time planning as re-planning is required
to navigate dynamic environments.

Optimisation-based planning approaches such as covariant
Hamiltonian optimisation for motion planning (CHOMP) [16]
and Stochastic Trajectory Optimisation for Motion Planning
(STOMP) [17] require a large number of trajectory states
when given multiple constraints. These approaches typically
start from an initial guess, a trajectory linking the start and
desired end states, which is refined through minimisation of a
cost function. Computation terminates when a stop condition
is reached or the algorithm times out. The artificial potential
algorithm [18], [19] is perhaps the closest optimisation-based
planning approach to our work. It achieves real-time obstacle
avoidance by creating attractive and repulsive fields around
goals and obstacles. End-effector movement is then guided
by the gradient of these fields. Although appealing in its
simplicity, it struggles to handle additional constraints on
properties that cannot be fully determined by robot joint
configuration.

Several recent works attempt to leverage neural networks
for motion planning. Neural motion planning methods [20],
[21], [6], [22] employ imitation learning (IL) on expert
demonstrations generated by a sampling-based motion planner
or reinforcement learning (RL) [23] to learn motion policies.
However, many samples are required to train such policies
in complex environments. These methods also struggle to
generalise to unseen scenes.

Another set of works performs planning in learned latent
space [24], [8]. L2RRT [21] plans a path in a learned
latent space using RRT. Our work builds upon Latent Space
Path Planning (LSPP) [8]. LSPP plans a trajectory for a
robot via iterative optimisation using activation maximisation
(AM) [9] in a latent space of the robot kinematics learned
by a generative model. Leveraging a collision predictor as
a constraint, LSPP successfully plans a collision-free path
with improved efficiency in planning time. However, LSPP
approximates a scene as a set of cylindrical obstacles and
requires state-based knowledge of the scene, such as position
and shape of obstacles. Such narrow scene definitions and
lack of complete information limits the application of this
method to real-world problems.

To successfully generate a collision-free path in a scene
with obstacles, learning a collision predictor to identify

collision between a robot and the scene is essential. Prior
neural motion planning methods [20], [21], [6], [25] learn
obstacle representations either from 2D images, occupancy
grids, or point clouds, instead of explicitly predicting a
probability of collision. SceneCollisionNet [11] learns the
scene embeddings for a collision predictor from a large
number of synthetic scenes generated with diverse objects
from ShapeNet [12]. To leverage a collision predictor as a
constraint for motion planning, we utilise SceneCollisionNet
and adapt it to work within our latent planning framework.

III. APPROACH

In this work, we introduce a method remarkably extending
the prior work [8] and name it Activation Maximisation Plan-
ning in Latent Space (AMP-LS). Similar to the prior work [8],
AMP-LS leverages a variational autoencoder (VAE) [26], [27]
to learn a structured latent space to generate kinematically
feasible joint trajectories. While a collision predictor in the
prior work relies on state-based obstacle representations,
our collision predictor leverages scene embeddings obtained
from SceneCollisionNet [11] to readily achieve zero-shot
transfer to unseen environments. Further, we present an
approach for explicit collision checking to directly regularise
the optimisation to plan collision-free trajectories. In the
following section, we describe an overview of our model (see
Fig. 2) and optimisation objective for planning.

A. Problem Formulation

Similar to [8], we consider the problem of generating
a collision-free trajectory consisting of robot joint config-
urations {q0, . . . ,qT } for a robot in an environment with
obstacles. A state xt at time t consists of a kinematically
feasible robot joint configuration qt, and its end-effector
position and orientation epost and eorit . The end-effector
orientation eori employs a 6D representation of SO(3), which
consists of the first two column vectors in a rotation matrix
R. This representation is suitable for learning rotations using
neural networks due to its property of continuity [28]. Note
that no prior information of obstacles (e.g., mesh) is given. An
observation ot ∈ Rn×3 at time t is defined as a point cloud
with n points from a third-person camera. ot includes only
scene information; thus, the robot point cloud is excluded
from the raw point cloud. The extraction of the robot point
cloud is readily achieved using MoveIt [29].

B. Learning Latent Representations of Robot State

To plan cohesive paths for the manipulator using a
learned latent space, the latent space must be structured and
disentangled. Leveraging a VAE [26], [27], prior work [8]
has successfully learned such a latent space and captured a
notion of local distance in joint space. In their representation,
poses that are close to each other in joint space are also close
in latent space. Similarly, we also learn a VAE consisting
of an encoder qϕ(z|x) and decoder pθ(x|z), where z is the
latent representation. To train the VAE, rather than directly
maximise the evidence, pθ(x) =

∫
pθ(x | z)pθ(z)dz, which

is generally intractable, we instead optimise the evidence
lower bound (ELBO) LELBO ≤ p(x):



Fig. 2: Our method overview. A VAE (blue) is trained using feasible robot states x consisting of joint states, end-effector
position, and end-effector orientation to learn structured latent representations z (yellow). Then, freezing the weights of
the pre-trained encoder in the VAE, the collision predictor (red) takes as input the learned latent representation z and a
scene point cloud observation o. The collision predictor built upon SceneCollisionNet learns to output a probability ĉ of
collision between the robot arm and obstacles. To plan a collision-free trajectory, gradient-based optimisation is applied to
produce a sequence of latent representations {zt}Tt=1 each of which has low probability of collision with the scene using the
learned collision predictor. A sequence of joint states {qt}Tt=1 is generated by decoding the sequence of latent representations
{zt}Tt=1 using the trained decoder in the VAE.

LELBO = Ez∼qϕ(z|x) log pθ(x | z)︸ ︷︷ ︸
Reconstruction Accuracy

−DKL [qϕ(z | x)∥p(z)]︸ ︷︷ ︸
KL Term

(1)
There is a trade-off in the ELBO loss between the recon-
struction accuracy and the KL term: accurate reconstruction
at the cost of poorly structured latent space, on one hand,
or well structured latent space but noisy reconstruction, on
the other. These terms are often manually weighted in the
ELBO formulation [30]. An alternative to manually tuning
the weight is to use GECO [31]. GECO adaptively tunes
the trade-off between reconstruction and regularisation by
formulating the ELBO loss as a constrained optimisation
problem with a Lagrange multiplier λ:

LGECO = −DKL [qϕ(z | x)∥p(z)]︸ ︷︷ ︸
KL Term

+λ Ez∼qϕ(z|x)[C(x, x̂)]︸ ︷︷ ︸
Reconstruction Error Constraint

(2)
This encourages the model to optimise the reconstruction
accuracy first, until the it reaches a predefined target. The
KL term is then optimised. The generative model is trained
on a dataset of valid joint states of the robot.

C. Activation Maximisation for Motion Planning

Our goal is to plan a trajectory consisting of robot joint
configurations towards a target pose. That is, given a target
end-effector position epostarget and orientation eoritarget, a sequence
of joint configurations {q0, . . . ,qT } that leads a robot to
the target pose is generated. Leveraging the trained VAE
inspired by the prior work [8], we can compute such a
sequence of robot joints by decoding the latent representation
of the VAE model {z0, . . . , zT }. This sequence of the latent
representation is computed in a probabilistic model through
activation maximisation (AM) [9]:

zt+1 = zt − αAM∇LAM (3)

where
LAM = λpos

∥∥êpos, epostarget

∥∥
2︸ ︷︷ ︸

Target Position Loss

+λori
∥∥êori, eoritarget

∥∥
2︸ ︷︷ ︸

Target Orientation Loss

+(− log p(z))︸ ︷︷ ︸
Prior Loss

(4)

In contrast to the prior work [8], we also introduce an end-
effector orientation constraint, which is generally useful for
reaching a pre-grasp pose. The first latent representation z0
is acquired by encoding the current/starting robot state z0 ∼
qϕ(z|x = x0). Note that model parameters are not updated,
but only the parameterised latent variable z is iteratively
updated. The first two terms in LAM (Eq. 4) guide the latent
representation to decode to robot joint state that approaches
the target pose. The third term is the likelihood of the current
representation under its prior, which is introduced in [8] to
encourage the latent representation to stay close to the training
distribution, thus decoding to kinematically feasible pair of
joint position and end-effector pose.

D. Collision Constraints
To generate a collision-free trajectory, similar to that used

in prior work [8], we add collision constraints to the objective
function in Eq. 4 by introducing a collision predictor. While
the prior work uses a narrowly defined state-based obstacle
representation as input to the collision predictor, in our
approach, we adapt SceneCollisionNet [11] to embed scene
observations for zero-shot transfer to unseen environments.
Specifically, the voxel features from SceneCollisionNet are
concatenated with the latent representation of the robot z, the
relative translation, and the rotation from the centre of each
SceneCollisionNet voxel as an input to a collision classifier
to predict the probability of collision ĉ between the robot
and obstacles (see Fig. 2). Note that we train the collision
predictor only on features of voxels closest from each robot
link to ignore unnecessary voxel information. While training
the collision predictor, the weights of the pre-trained VAE are



Algorithm 1 Planning a collision-free path in latent space
via activation maximisation

1: Initialise a buffer D = {q0}, λpos, λori, λcol, qprev = q0

2: z0 ∼ qϕ(z|x = x0)
3: for t = 0, 1, 2, . . . ,H do
4: {q̂t, ê

pos
t , êorit } ∼ pθ(x|z = zt)

5: if t > 0 and pϑ(zt,ot) < γcol then
6: {qprev, . . . , q̂t} = finterpolate(qprev, q̂t)

▷ Linear interpolation between qprev and q̂t

7: if collision in {qprev, . . . , q̂t} then
8: i← index of the first joint state with collision in

the interpolated trajectory
9: m← |{qprev, . . . , q̂t}|

10: Reduce λpos and λori by i
m

11: q̂t ← qprev, zt ← zprev
▷ Back trace to the previous joint and latent representations
qprev and zprev for replanning

12: else
13: D ← D ∪ {qprev, . . . q̂t}
14: if d(êt, etarget) < γ then
15: break
16: end if
17: qprev ← q̂t, zprev ← zt
18: end if
19: end if
20: Compute losses (Eq. 5)
21: Update λpos, λori, and λcol using GECO
22: zt+1 ← zt − αAM∇LAM

t
23: end for

frozen so that the pre-trained latent space does not change.
The collision predictor is trained using the binary cross-
entropy (BCE) loss with ground truth collision labels. To drive
the latent representation away from obstacles, we incorporate
the collision predictor loss into Eq. 4:

LAM = λpos
∥∥êpos, epostarget

∥∥
2︸ ︷︷ ︸

Target Position Loss

+λori
∥∥êori, eoritarget

∥∥
2︸ ︷︷ ︸

Target Orientation Loss

+λcol (− log (1− pϑ (z,o)))︸ ︷︷ ︸
Collision Loss

+(− log p(z))︸ ︷︷ ︸
Prior Loss

(5)

During the planning, three coefficients λpos, λori, and λcol
are automatically and dynamically adjusted by GECO [31].
Minimising the collision loss during AM optimisation drives
the latent representation z towards the representation whose
decoded joint configuration is collision-free.

E. Collision Checking
While prior work [8] simply optimises the objective

function until it reaches a target, we observe that it is hard
to perfectly balance multiple loss terms and that such simple
optimisation often results in collision between the robot and
obstacles. In contrast to the target losses, the collision loss
is inherently a hard constraint that should not be violated
at any point in the trajectory. To address this issue, our
high-level idea is that collision can be predicted and avoided
before execution and the coefficients of the objective function
determine the direction in which the latent representation is
heading towards. Specifically, we introduce explicit collision

checking and automatic rescaling for coefficients during the
planning to avoid obstacles more safely. That is, if a collision
probability of the decoded joint configuration is higher than a
predefined threshold γcol, we reject such robot configuration
that is highly likely to be in collision and keep optimising
the latent space until the decoded joint state is collision-
free. Then, we interpolate a trajectory between the current
and decoded collision-free joint state in m steps and pass
them to the collision predictor to check for collision. If there
is any collision in the interpolated trajectory, we obtain its
index i of the joint state with collision closest to the current
joint state and reduce the coefficients of the target position
and orientation loss by multiplying by i

m , to encourage the
optimisation to minimise the collision loss. Intuitively, this
scaling induces the robot to deviate from the original route
drastically depending on how close it is to an obstacle. This
process continues until the collision-free next joint state is
found and there is no collision in the interpolated trajectory
between the current joint state and the next joint state. In our
experiments, we use the threshold of γcol = 0.3 chosen by a
grid search. For further details, see Algorithm 1.

IV. IMPLEMENTATION DETAILS

A. Architecture Details
Our VAE encoder and decoder consist of three fully

connected hidden layers with 512 units and ELU activation
functions [32]. The input dimension to the VAE is 16,
consisting of robot joint states q ∈ R7, end-effector position
epos ∈ R3 and 6D representation of end-effector rotation
matrix eori ∈ R6. The dimension of the latent space z is 7.
The collision classifier which takes as input the voxel features,
the learned latent representation of robot states, and relative
rotation and translation of each robot link, consists of one
hidden fully connected layer with units of [1024, 256].

B. Training Details
The VAE is trained using kinematically feasible robot joint

configurations. To generate such joint states, we leverage
the Flexible Collision Library (FCL) [33] for self-collision
checking. The VAE model is trained with a batch size
of 256 for about 2M training iterations using the Adam
optimiser [34] with learning rate of 3e−4 on a GeForce RTX
3090. Throughout training, valid robot configurations are
generated on the fly as it is cheap to do so. In total, the
model is exposed to around 500M configurations.

The collision predictor is trained on diverse synthetic
point cloud data to assist zero-shot transfer to scenes with
unseen obstacles. Such scenes are generated by placing objects
randomly sampled from the ShapeNet dataset [12], consisting
of 8828 3D meshes. Each object is placed on a planar surface
with random position and rotation. We sample the number
of objects placed on the surface from a uniform distribution
between 4 and 8. To train the collision predictor, a new
scene is procedurally generated for each training iteration
similar to the prior work [11], and we randomly sample 2048
instances of kinematically feasible robot joint configurations
and check for collisions between each robot configuration
and the generated scene using FCL. A third-person RGB-D
camera is directed towards the centre of the scene to sample
point clouds. The camera extrinsics are randomly sampled for
each query from a predefined range of roll, yaw, and pitch



Fig. 3: Visualisation of real-world experiments. Top: Our method successfully plans a collision-free trajectory in a complex
real-world scene from an impeded start configuration to a pre-grasp goal configuration. By training a collision predictor
on diverse synthetic scenes, our method can readily transfer to such unseen scene. Bottom: AMP-LS can be applied to
closed-loop planning to avoid moving obstacles and reach a moving target object on a conveyor. This reader is referred to
our supplementary video for better visualisation.

parameters. Thus, 2048 unique valid robot configurations and
point clouds are procedurally generated for each iteration to
train the collision predictor. We train the collision predictor for
1M training iterations using SGD with a learning rate of 1e−3
and with momentum 0.9 for approximately 7 days, which is
similar to the training time requirement of SceneCollisionNet.

C. Deploymenet details
In open-loop planning, the current state x0 is encoded to

a latent representation z0. Then, the encoded latent repre-
sentation is iteratively optimised through AM optimisation
(see Eq. 5) until the end-effector reaches the the target pose
with tolerance of γ. In closed-loop planning, while the latent
representation is similarly optimised, a point cloud input for
the collision predictor and the target pose in the objective
function (see Eq. 5) are updated from the current observation
at each time step for reactive motion.

V. EXPERIMENTS

We design our experiments to answer the following guiding
questions: (1) how does AMP-LS perform compared to
traditional motion planning methods such as sampling and
optimisation-based approaches in open-loop settings? (2) does
AMP-LS transfer zero-shot to real-world static environments?
(3) does AMP-LS cope with dynamic environments using
closed-loop planning?

A. Experimental Setup
We evaluate our approach in both simulated and real-

world environments. In simulation, we use the Gazebo
simulator [35] with ROS. In all of simulated and real-world
experiments, we use a 7-DoF Franka Panda robot.

B. Open-Loop Planning for Reaching Static Targets
We evaluate AMP-LS in an open-loop planning setup in

a simulated environment. In this experiment, obstacles in
the environment are static. We select a range of sampling
and optimisation-based motion planners typically used by the
robotics community and available within the unified MoveIt!
library. We compare our method against several sampling-
based motion planners and an optimisation-based motion
planner: RRT-Connect [36], RRT* [13], Lazy PRM* [37],
LBKPIECE [38], BIT* [14], and CHOMP [16]. CHOMP uses
a linear initialisation from start to goal joint positions. Since

we assume that complete knowledge of the environment is not
available, occupancy maps [39] generated from point clouds
are used for collision checking in motion planning baseline
methods. We evaluate the methods on 100 novel scenes where
objects are randomly placed on a table (see Fig. 1 (a)). The
hyperparameters used for GECO to determine coefficients
of our objective function (see Eq. 5) are found via a grid
search similar to that of prior work [8]. For the baselines, we
use the default parameters provided by MoveIt OMPL. For
RRT*, Lazy PRM*, and BIT*, a 1 second planning budget
is given. Across all methods, a motion plan is considered to
be successful if a robot reaches a target within a distance
tolerance of 1cm and orientation tolerance of 15 degrees.

As illustrated in Table I, our method achieves reasonable
success rate with improved planning time compared to most
of the motion planning baselines. Specifically, AMP-LS
outperforms CHOMP, which is also an optimisation-based
motion planner, by a significant margin because CHOMP
requires a large number of trajectories to find a feasible path
in complex scenes, in contrast to AMP-LS. AMP-LS still
has a competitive success rate against RRT-Connect, but the
planning time of AMP-LS is an order of magnitude faster than
the baseline. Traditional motion planning baselines often fail
to find a collision-free path within a short time and sometimes
plan a path with collision due to occlusions in the scenes. In
contrast, our collision predictor is trained on diverse synthetic
scenes with occlusion and can therefore reason about occluded
regions, similar to SceneCollisionNet [11]. While our method
demonstrates reasonable accuracy and improved planning
efficiency, the path length is longer than most of the other
baselines. The longer path length is due to the design of the
planning strategy used in the prior work [8] that tunes the
coefficients of losses automatically to avoid obstacles, thus
not directly minimising the path length. To address this issue,
additional optimisation constraints could be explored in the
future that focus on reducing the path length.

To verify that constraints such as a prior loss and collision
loss successfully induce successful collision-free trajectories,
we also ablate the constraints of our objective functions. As
illustrated in Table I, the success rate of AMP-LS without a
collision loss and prior loss significantly drops. This indicates
that our collision predictor successfully constrains the latent
space even in novel scenes. Furthermore, AMP-LS without the



Success rate Planning time (s) Path length
AMP-LS (ours) 0.89 ± 0.06 0.26 ± 0.13 3.63 ± 1.05
AMP-LS w/o col. loss 0.46 ± 0.10 0.12 ± 0.04 3.68 ± 1.29
AMP-LS w/o prior loss 0.35 ± 0.09 0.24 ± 0.21 3.23 ± 1.12
RRT-Connect 0.86 ± 0.07 1.60 ± 0.89 2.17 ± 0.84
RRT* 0.36 ± 0.09 N/A 2.25 ± 0.78
Lazy PRM* 0.82 ± 0.08 N/A 2.26 ± 0.82
LBKPIECE 0.23 ± 0.08 2.54 ± 1.12 2.34 ± 0.92
BIT* 0.63 ± 0.09 N/A 2.42 ± 1.02
CHOMP 0.39 ± 0.10 2.24 ± 0.79 2.41 ± 0.90

TABLE I: Comparison of performance of our method AMP-
LS against baseline motion planning algorithms and ablation.
We also report 95% confidence interval of Wilson score [40]
for success rate and standard deviation for planning time and
path length. The path length is normalised by dividing the
actual path length by the distance between the initial and
target end-effector positions for fairer comparison.

prior loss results into significantly poorer performance as the
latent representation is optimised to drive into unseen latent
representations which decode to kinematically inconsistent
configurations. This is consistent with findings in [8].

Fig. 4: Coordinates of end-effector and moving targets
in closed-loop settings. To verify the ability of closed-loop
planning in our method, we deploy our method to the real-
world robot arm to reach a moving target.

C. Real-World Open-Loop Planning in a Complex Scene
Our method readily transfers to complex real-world scenes.

To verify this, we evaluate our method in a complex real-world
static scene using open-loop planning as illustrated in Fig. 1
(c). In this task, the robot needs to reach the unassembled
table leg while avoiding the other table legs to achieve a
pre-grasp pose in a furniture assembly task. We control the
robot arm using a torque controller that can track a joint
position command. As shown in Fig. 3 Top, our method can
successfully plan a collision-free trajectory for a robot starting
next to the table legs to avoid the obstacles and reach the
unassembled table leg on the table. This demonstrates that
our collision predictor, trained on diverse synthetic scenes, is
transferable to real-world environments.

D. Closed-Loop Planning for Moving Obstacles and Target
As our method is, by design, an efficient local planner,

AMP-LS is able to act reactively when operated as a closed-
loop system. To verify the closed-loop potential of AMP-LS

we deploy our method on a robot with the goal of reaching
a moving target without obstacles. To control the real-world
robot, a desired next joint position is sent to a torque controller
at 10Hz. Fig. 4 illustrates coordinates of the moving target
and the end-effector position over 50 seconds. Since our
method can predict the next desired joint state quickly, the
robot can reactively follow the moving target.

To further demonstrate the ability of reactive motion using
AMP-LS, we evaluate our method on a setup where the robot
needs to avoid moving obstacles and reach a target object on
a conveyor in both simulated and real-world environments
(see Fig. 3 Bottom). Firstly, we quantitatively evaluate our
method to examine the ability of reactive motion in the
simulated environment. In this evaluation, we randomly
generate obstacles with different size, and the obstacle and a
target object are randomly placed on the conveyor belt. We
observe that the robot successfully avoids the obstacle and
reaches a moving target on the conveyor with the success
rate of 93.3% (28/30 trials) thanks to the fast planning of
our method. Note that we use the threshold of 3cm and
20 degrees in this experiment, because tight tolerance for
reaching a moving target is challenging unless a future state
of the target is estimated and used for planning.

In the real-world experiment, the robot starts moving
towards the target object with the attached AprilTag [41]
when it is observed by the third-person camera while avoiding
a moving obstacle. For closed-loop planning, the collision
predictor takes as input a point cloud data for each time step.
As illustrated in Fig. 3 Bottom, the robot successfully avoids
the moving obstacle to reach and follow the target object.

VI. CONCLUSION

In this work, we present AMP-LS, a learning-based motion
planning approach that generalises to unseen obstacles in
complex environments. AMP-LS is built upon LSPP [8] and
inherits a number of desirable properties. However, AMP-
LS considerably extends LSPP by introducing a collision
predictor trained on diverse synthetic scenes to leverage scene
embeddings for unseen scene generalisation, and explicit
collision checking during planning for safe obstacle avoidance.
We demonstrate that AMP-LS successfully generates collision-
free paths in both unseen simulated and real-world scenes.
The comparison between AMP-LS and several sampling
and optimisation-based motion planning baselines shows
that our method achieves commensurate success rate with
much improved planning time. Furthermore, our real-world
experiments show that AMP-LS can handle both open
and closed-loop planning, which significantly broadens the
applicability to real-world robotic problems. For future work
we look to extend AMP-LS to more complex tasks such as
grasping and pick-and-place.
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