
From Visuomotor Control to Latent
Space Planning for Robot Manipulation

Chia-Man Hung
Keble College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2022

From Visuomotor Control to Latent Space Planning for Robot Manipulation
Candidate: Chia-Man Hung
Supervisors: Dr. Ioannis Havoutis, Prof. Ingmar Posner
Examiners: Dr. Lars Kunze, Prof. Edward Johns

University of Oxford
Dynamic Robot Systems Group (DRS)
Applied Artificial Intelligence Lab (A2I)
Oxford Robotics Institute (ORI)
Department of Engineering Science

Statement of Authorship

This thesis is submitted to the Department of Engineering Science, University of
Oxford, in fulfilment of the requirements for the degree of Doctor of Philosophy.
This thesis is entirely my own work, and except where otherwise stated, describes
my own research.

Chia-Man Hung
Keble College
October 2022

Acknowledgements

First and foremost, I am eternally grateful and indebted to my supervisors Dr.
Ioannis Havoutis and Prof. Ingmar Posner for their endless support, enthusiasm,
understanding, and patience in guiding me through this journey. Their research
insights and constructive feedback have been invaluable in leading me through the
ups and downs and in shaping my work over the past few years.

This thesis would not have happened had I not been inspired to pursue research
by my former internship host Ralf Perpeet at Google London. He has not only
taught me technical skills while working together, but has also become my role
model, someone I aspire to be. Likewise, I thank Dr. Stephan Wenger for sharing his
expertise at Google Zurich. I equally value the guidance Mme. Marie-Claire Casteran
provided during my time at Lycée d’État Jean Zay. I take this opportunity to thank
Prof. Maks Ovsjanikov, Prof. Luca Castelli Aleardi, Prof. Renaud Keriven, and
Prof. Yanlei Diao for sharing their knowledge and energy at Ecole Polytechnqiue, as
well as Monsieur Mansuy, Monsieur Cubizolles, Monsieur Pommelet, and Monsieur
Logeais for giving me a foundation of mathematics and physics and sharing the
passion for science through their teaching at Lycée Louis le Grand.

I am also immensely grateful for my collaborators and labmates at the Oxford
Robotics Institute. From brainstorming wild ideas, pushing through deadlines, to
lifting each other up, they have made my research life so much more enjoyable.
Especially, I would like to thank Oliver Groth, Yizhe Wu, Kevin Li Sun, Walter
Goodwin, Shaohong Zhong, Jun Yamada, Sasha Salter, Oiwi Parker Jones, Jack
Collins, Martin Engelcke, Rob Weston, Alexander Mitchell, Sudhanshu Kasewa,
Mark Finean, and Rowan Border. Special mention deserves Jack Collins for his
help with proofreading this manuscript and providing useful suggestions.

The work described in this thesis was funded by the Clarendon Fund and Keble
College Sloane Robinson Scholarship, as part of the UKRI EPSRC Centre for
Doctoral Training (CDT) in Autonomous Intelligent Machines and Systems (AIMS).
I thank them for providing the financial support allowing me to undertake this
research, and for giving me the opportunity to meet so many interesting people.

Getting through the PhD programme requires more than academic support,
and I would like to take this opportunity to express my gratitude to our AIMS
CDT administrator Wendy Poole. She is the unsung hero who has resolved all my
requests well and promptly, saving me from potential disasters every single time.

I would like to acknowledge the use of the University of Oxford Advanced
Research Computing (ARC) facility in carrying out this research (http://dx.doi.
org/10.5281/zenodo.22558) and the use of Hartree Centre Resources via JADE
HPC UK. In addition, I would like to express my gratitude to their technical support
teams for the help with various issues.

I am fortunate to have crossed paths with Ruo-Chun Tzeng, Chi-Yun Hsu, Chia-
An Liu, Jhih-Huang Li, Chieh-An Lin, Tikai Chang, Hsueh-Yung Lin, Quei-An
Chen, Li-Ming Tu, Hua-Ting Yao, Bo-Yuan Huang, En-Hung Chao, Yueh-Ning Lee,
Hung-Ling Chen, Anne You Wu, Clémence Graftieaux, Mélanie Finas, Akrem Bahri,
Pritish Luchoomun, Bettina Chung, Ana-Maria Cretu, Zhengying Liu, Dexiong
Chen, Yuesong Shen, Yixin Shen, Alexandre Tuel, Joseph-André Turk, Khaled
Zaouk, Hala Lamdouar, Ada Alevizaki, Siddhant Gangapurwala, Yuki Asano, and
Tim Rudner. Every one of them has shared some of my burden. I would like to
thank all my friends who have helped me, some of whom I may have missed here.

Outside of work, I have probably spent more time than I should have in gliding
and judo, but nothing beats the feeling of freedom in the blue silent sky and the
sense of accomplishment from a beautifully executed throw. To Ania Liu, Dinant
Riks, Julie Dequaire, Bogdan Toader, Philipp Kerth, Pete Stratten, Jamie Allen,
George Tvalashvili, Jim Gulliver, Bob Bromwich, Jeremy Mahrer, Alison Mulder,
Tai-Ying Lee, Chris Doherty, Carol Doherty, Jacob Armstrong, Alice Godson,
Brittany-Amber Jacobs, Miles Soloman, Eugene Soh, Bailey Anderson, Henrique
Aguiar, Fenella Gross, Chi-Yu Liu, Coach Hsiao-Mao, Coach Shih, and Master
Yu-Kang – thank you for all the moments we have shared together and helping me
to be a better person in various aspects of my life.

To my parents and my brother – thank you for your kindness and support,
without which I would not have come this far. This thesis stands as a testament to
your unconditional love.

Lastly, to my co-pilot Ruoqi He – thank you for your continued technical
and emotional support. It would be an understatement to say that we have
experienced some ups and downs in the past few years. Every time I felt like
giving up, you were there to help me get back on track. You know how much
you have contributed to my journey.

http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558

Abstract

Deep visuomotor control is emerging as an active research area for robot manipu-
lation. Recent advances in learning sensory and motor systems in an end-to-end
manner have achieved remarkable performance across a range of complex tasks.
Nevertheless, a few limitations restrict visuomotor control from being more widely
adopted as the de facto choice when facing a manipulation task on a real robotic
platform. First, imitation learning-based visuomotor control approaches tend
to suffer from the inability to recover from an out-of-distribution state caused
by compounding errors. Second, the lack of versatility in task definition limits
skill generalisability. Finally, the training data acquisition process and domain
transfer are often impractical. In this thesis, individual solutions are proposed
to address each of these issues.

In the first part, we find policy uncertainty to be an effective indicator of potential
failure cases, in which the robot is stuck in out-of-distribution states. On this basis,
we introduce a novel uncertainty-based approach to detect potential failure cases
and a recovery strategy based on action-conditioned uncertainty predictions. Then,
we propose to employ visual dynamics approximation to our model architecture to
capture the motion of the robot arm instead of the static scene background, making
it possible to learn versatile skill primitives. In the second part, taking inspiration
from the recent progress in latent space planning, we propose a gradient-based
optimisation method operating within the latent space of a deep generative model for
motion planning. Our approach bypasses the traditional computational challenges
encountered by established planning algorithms, and has the capability to specify
novel constraints easily and handle multiple constraints simultaneously. Moreover,
the training data comes from simple random motor-babbling of kinematically feasible
robot states. Our real-world experiments further illustrate that our latent space
planning approach can handle both open and closed-loop planning in challenging
environments such as heavily cluttered or dynamic scenes. This leads to the first, to
our knowledge, closed-loop motion planning algorithm that can incorporate novel
custom constraints, and lays the foundation for more complex manipulation tasks.

Contents

Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Guiding Questions . 3
1.3 Thesis Outline . 4

1.3.1 Visuomotor Failure Recovery using Policy Uncertainty Pre-
diction . 5

1.3.2 Versatile Visuomotor Skill Primitives via Dynamic Represen-
tations . 6

1.3.3 Motion Planning Through Latent Space with Primitive Shapes 8
1.3.4 Generalisation of Motion Planning from State-Based Obser-

vations to Complex Scenes 9
1.4 Publications . 10

2 Background 13
2.1 Robot Learning for Manipulation 13

2.1.1 Object and Environment Representations 15
2.1.2 Transition Models . 17
2.1.3 Skill Policies . 18
2.1.4 Characterising Skills by Preconditions and Effects 20
2.1.5 Compositional and Hierarchical Task Structures 21

2.2 Related Work . 21
2.2.1 Visuomotor Control for Robot Manipulation 21
2.2.2 Latent Space Planning for Robot Manipulation 24

3 Preliminaries 27
3.1 End-to-End Visuomotor Control . 27
3.2 Uncertainty Estimation in Deep Learning 28

3.2.1 Types of Uncertainty . 28
3.2.2 Bayesian Modelling . 29
3.2.3 Variational Inference . 30
3.2.4 Bayesian Neural Networks 30

3.3 Deep Generative Modelling . 31

xi

xii Contents

4 Introspective Visuomotor Control: Exploiting Uncertainty in Deep
Visuomotor Control for Failure Recovery 35

5 Goal-Conditioned End-to-End Visuomotor Control for Versatile
Skill Primitives 43

Appendices
5.A GEECO Hyperparameters . 51
5.B GEECO Ablation Details . 53
5.C E2EVMC Baseline . 55
5.D Visual Foresight Baseline . 56
5.E TecNet Baseline . 60

6 Reaching Through Latent Space: From Joint Statistics to Path
Planning in Manipulation 63

Appendices
6.A Training Details . 73

6.A.1 LSPP Hyperparameters . 73
6.A.2 Choice of Hyperparameters 73

6.B Planning Details . 75
6.B.1 Modification of GECO . 75
6.B.2 Planning Hyperparameters 75

6.C Choice of Baselines . 75
6.D Analysis on Latent Space Representation 77

7 Leveraging Scene Embeddings for Gradient-Based Motion Planning
in Latent Space 79

8 Discussion 89
8.1 Key Contributions . 89
8.2 Limitations . 91
8.3 Future Work . 94

References 97

Acronyms

2D Two-Dimensional

3D Three-Dimensional

AM Activation Maximisation

AMP-LS Activation Maximisaion Planning in Latent Space

BCE Binary Cross-Entropy

BIT Batch Informed Trees

BNN Bayesian Neural Network

BVMC Bayesian Visuomotor Control

CCE Categorical Cross-Entropy

CEM Cross-Entropy Method

CHOMP Covariant Hamiltonian Optimisation for Motion Planning

CNN Convolutional Neural Network

DAGGER Dataset Aggregation

DoF Degree of Freedom

DVBF Deep Variational Bayes Filters

E2EVMC End-to-End Visuomotor Control

ELBO Evidence Lower Bound

ELU Exponential Linear Unit

FC Fully Connected

FCL Flexible Collision Library

FK Forward Kinematics

FMT Fast Marching Trees

GAIL Generative Adversarial Imitation Learning

GECO Generalised ELBO with Constrained Optimisation

GEECO Goal-Conditioned End-to-End Control

xiii

xiv Acronyms

IBVS Image-Based Visual Servoing

i.i.d. Independent and Identically Distributed

IK Inverse Kinematics

IL Imitation Learning

KL Kullback-Leibler

KPIECE Kinodynamic Motion Planning by Interior-Exterior Cell Explo-
ration

L2RRT Learned Latent RRT

LBKPIECE Lazy Bi-Directional KPIECE

LSPP Latent Space Path Planning

LSTM Long Short-Term Memory

MAML Model Agnostic Meta-Learning

MLP Multi-Layer Perceptron

MPC Model-Predictive Control

MSE Mean Squared Error

OMPL Open Motion Planning Library

PBVS Position/Pose-Based Visual Servoing

PCA Principal Component Analysis

PID Proportional-Integral-Derivative

PlaNet Deep Planning Network

PRM Probabilistic Roadmap

ReLU Rectified Linear Unit

RGB Red, Green, Blue

RGB-D Red, Green, Blue-Depth

RL Reinforcement Learning

RRT Rapidly-Exploring Random Tree

SAVP Stochastic Adversarial Video Prediction

SGD Stochastic Gradient Descent

SQIL Soft Q Imitation Learning

STOMP Stochastic Trajectory Optimisation for Motion Planning

TecNet Task-Embedded Control Network

Acronyms xv

TrajOpt Trajectory Optimisation

VAE Variational Autoencoder

VFS Visual Foresight

VMC Visuomotor Control

xvi

1
Introduction

1.1 Motivation

Robot manipulation, the capability of interacting with the objects around and

effecting change on the world, is a key characteristic that sets robots apart from

other automated and computerised systems. The world constantly evolves and the

environment is often unpredictable, having a system that learns to adapt to the

environmental changes is thus of paramount importance. A key learning challenge

in manipulation is learning skill policies [53]. The goal of a skill policy is for

the robot to accomplish certain objectives, such as reaching a target, pushing

a cube, picking up a stick, etc.

Among all possible policy learning schemes, visuomotor control (VMC) [60] is

an effective means of learning to perform manipulation tasks from demonstration

trajectories of raw visual sensor data. Learning from demonstrations has the

advantages of describing the task or user preference that may be hard to be specified

or encoded programmatically; bypassing exploration or reward shaping that would

usually be required in a reinforcement learning setting that could be computationally

expensive or have safety concerns. Recent advances in VMC have achieved impressive

feats across a range of tasks [33, 65, 90]. In particular, it has been demonstrated to

1

2 1.1. Motivation

achieve remarkable performance in pick-and-place, a fundamental building block of

more complex manipulation tasks, with successful zero-shot sim-to-real transfer [42].

Despite its multiple strengths, VMC also has its own limitations as listed in the

following. (a) The issue of distribution shift, which refers to the phenomenon in

supervised learning when the data a model is trained on changes over time causing

the prediction to be less accurate, is common in imitation learning [79]. Standard

approaches greedily imitate demonstrated actions without reasoning about the

consequences of those actions. During training, the policy has only seen expert

demonstrations, while during execution, very often due to noise in the environment

and compounding errors, it may drift into out-of-distribution states and does not

know how to return to demonstrated states. (b) Policies are designed and trained to

perform tasks that are narrowly defined, resulting in a lack of versatility. For example,

in the controllers of [42, 105], putting a red cube into a blue basket is a different

task than putting a yellow cube into a green basket. Although these two controllers

have much in common, they need to be trained separately and using representative

data. This approach is inefficient and more importantly, it is impossible to cover an

infinite amount of task variations. (c) VMC typically requires a significant amount

of data. However, expert demonstrations required as training data may be hard to

acquire. Collecting human demonstrations in the real world may be time-consuming,

while relying on an expert policy to collect demonstrations in simulation may limit

the complexity of task definition. An expert policy in simulation usually relies on

state-based information and it is generally hard to design one for tasks that require

more than just getting into designated positions and closing or opening the gripper,

e.g., water pouring, door opening, in-hand manipulation.

While VMC is effective in learning different skills, it merely generalises from

what it has seen in the training data and cannot reason about obstacles and plan

paths around them. Indeed, another key challenge in robotics is that of motion

planning, which consists of finding a sequence of valid joint configurations moving

the robot from an initial to a target configuration, typically in the presence of

obstacles and subject to robot joint limits and velocity and torque constraints. It is

1. Introduction 3

a fundamental skill in manipulation. For instance, given a task of grasping an object,

the first step would be to perform motion planning to reach that object. Traditional

approaches [57] are limited in a number of ways. First, as the complexity of the

configuration increases (i.e., Degrees of Freedom (DoF) of the robot, environmental

complexity), the decreasing efficiency of traditional approaches makes reactive

behaviours challenging. While existing approaches [22, 46] can find solutions to

motion planning problems, their planning time scales super-linearly with the DoF of

the robot and the scene complexity [62]. Requiring extensive computational power

limits the applications of traditional planning approaches in time-sensitive scenarios,

e.g., in adapting to changes in the environment. Second, traditional approaches are

often restricted in their ability to meet multiple constraints simultaneously. On the

one hand, optimisation-based planners are often not designed to handle constraints

that cannot be expressed directly in joint space [73]. On the other hand, sampling-

based planners struggle to find solutions in scenarios where constraints render only

a small volume of configurations feasible [4, 58]. To sum up, motion planning in

high-dimensional space with a variety of constraints remains an open challenge.

A promising direction in learning-based approaches to motion planning attempts

to build a statistical model of a robot system from observations [6]. Conceptually, the

statistical approach provides a simple way to collect training data without requiring

extensive demonstrations. Recent advances in deep generative modelling [48] offers

a powerful technique to unsupervised learning of a compact internal representation

of high-dimensional data. We posit that a latent-variable deep generative model is

able to capture the correlations between variables of interest and the coordination

of complex high degree-of-freedom robot systems for motion planning.

1.2 Guiding Questions

In this thesis, we focus on four guiding questions that address the main limitations

mentioned above. The guiding questions that we propose are the following:

1. Can a visuomotor control model detect potential task failures before the end

of a policy rollout and recover from them?

4 1.3. Thesis Outline

2. Can a visuomotor control model learn versatile skills from visual demonstra-

tions that can be generalised to different tasks?

3. Can a generative model capture an accurate model of forward kinematics and

learn kinematics constraints for motion planning?

4. Can a generative model incorporate environmental constraints from sensor

inputs (e.g., point clouds) and handle multiple constraints for motion planning

in challenging environments, such as complex static scenes or dynamic scenes

with moving obstacles and a moving target?

More specifically, we aim to show that (a) by adopting a probabilistic approach

to VMC, we can predict policy uncertainty, which can be further utilised to guide

the robot to return to in-distribution states seen in training; (b) by introducing

a novel architecture for goal-conditioning, we can learn versatile skills that are

general enough to solve tasks with different object colours or shapes; (c) a novel

approach to motion planning that does not rely on expert demonstrations bypasses

traditional computational challenges while achieving commensurate performance

to established motion planning algorithms. Through the use of a latent-variable

generative model in motion planning, we can embed correlations between state

space variables into a structured latent space. By traversing the latent space

through optimisation, we can generate valid motion plans while simultaneously

satisfying multiple constraints, in particular target reaching, end-effector orientation

constraint, and obstacle avoidance.

1.3 Thesis Outline

To put the topic of the thesis into perspective, we begin our investigation by

providing context and reviewing existing literature in robot learning for manipulation

in chapter 2. We first give an introduction to robot manipulation and how learning-

based approaches come into play, which together form the broad theme of the thesis.

Then, we delve into individual learning challenges that encompass most manipulation

1. Introduction 5

problems. After surveying the broad challenges, we dedicate individual sections

to a focused literature review of visuomotor control and latent space planning for

manipulation, which are the central themes of this thesis.

Thereafter, in chapter 3, we present concept preliminaries essential to the

development of the thesis. More specifically, we lay out the frameworks and

conventions adopted to enable end-to-end visuomotor control, uncertainty estimation

in neural networks, and deep generative modelling, which form the basis of the

subsequent chapters.

In the remainder of this section, we provide an overview of individual chapters

from chapter 4 to 7 and how they address each guiding question. Each of the

subsections aims to outline the motivation, contribution and conclusion of chapters

4 to 7. An overview of the key contributions in this thesis is illustrated in fig. 1.1.

Finally, chapter 8 revisits our guiding questions, summarises our findings and

contributions, reflects critically on our own limitations, and provides an outlook for

future research directions building upon the contributions of this thesis.

1.3.1 Visuomotor Failure Recovery using Policy Uncertainty
Prediction

Visuomotor control is a special case of sequence prediction, which consists of

predicting a sequence of actions based on visual and proprioceptive observations. A

typical approach in imitation learning is to train a regressor to predict an expert’s

behaviour given training data of the encountered observations and actions from

the expert demonstrations. However, during the execution of a learned policy,

the current action impacts future observations and actions, violating the standard

i.i.d. assumption in most statistical learning problems. Faced with the issue of

distribution shift, DAGGER [79] uses an expert/supervisor to provide corrective

labels at each iteration under the current policy and trains the next policy under

the aggregate of all collected datasets to counter compounding errors. More recent

approaches GAIL [36] and SQIL [75] address this issue by training a reinforcement

6 1.3. Thesis Outline

learning agent to match the demonstrations and providing an incentive to encourage

the agent to return to demonstrated states respectively.

In chapter 4, we provide an alternative solution by investigating when a learned

policy is likely to be in an out-of-distribution state and designing an effective failure

recovery strategy. We posit that the policy uncertainty can indicate a potential

failure. In order to estimate the policy uncertainty, we adopt a probabilistic

approach [24] to the existing neural network architecture that consists of adding

dropout layers [86]. Drawing Monte-Carlo samples from a neural network with

dropout provides us with an uncertainty estimate. Afterwards, we analyse the

correlation between uncertainty and task failure and propose a threshold for

recovery that is optimal for our purpose. We further introduce a recovery strategy

involving taking the action that leads to minimum uncertainty. Simply knowing

the uncertainty of an action after it has been executed is not enough to find the

action leading to minimum uncertainty. Therefore, we learn a model mapping the

current feature embedding and action to the future uncertainty.

The experimental results show that task success rate is inversely correlated with

uncertainty, providing an empirical grounding of using uncertainty as an indicator of

how well a model performs. Having verified our hypothesis, we evaluate our proposed

recovery strategy against several other recovery baselines in simulated pushing, pick-

and-place, and pick-and-reach tasks. In all three tasks, our approach outperforms

baselines and exhibits interesting behaviours: after detecting high uncertainty, the

robot switches to a recovery strategy and recovers from a potential failure. This

framework holds a tantalising prospect of endowing existing deterministic policies

with the capability of recovering from failures by simply adopting a Bayesian

approach for uncertainty estimation.

1.3.2 Versatile Visuomotor Skill Primitives via Dynamic
Representations

In the literature of goal-conditioned visuomotor control for manipulation, the versa-

tility appears to be a major limitation. Common approaches to goal-conditioning

1. Introduction 7

mainly build on Model-Predictive Control (MPC) [14] and few-shot imitation

learning [13, 21]. An established line of MPC work on Deep Visual Foresight [14,

20, 68, 98] learns an action-conditioned video predictor, samples action sequences,

predicts outcomes according to a video predictor, and finally chooses the best action

sequence under a specific goal distance metric. However, the imprecision of the

forward model compounds over long time horizons and the sampling process can be

computationally expensive, limiting the applications to simple pushing or placing

tasks. Few-shot imitation learning approaches on the other hand, learn general

task representations which are quickly adaptable to unseen scene setups. They

typically learn a visuomotor control policy of a variety of tasks during training time,

which needs to be fine-tuned on a few demonstrations of a novel task during test

time. Nevertheless, such new demonstrations may not be easily accessible, limiting

their deployability. Unlike those methods, in chapter 5, we propose a visuomotor

controller named GEECO that can adapt to a new task via a single goal image

and without the need for additional demonstrations for fine-tuning.

In the approach section, we inquire how GEECO extends end-to-end VMC

architecture [42] to incorporate goal-conditioning. More specifically, by leveraging

dynamic images to represent the dynamics of an entire frame sequence in a

single image, it captures the current motion of the robot arm and focuses on

the difference in location and geometry of objects instead of the static scene

background. Consequently, the downstream network makes use of this representation

to make control command predictions more effectively and without the need of

additional supervision labels for tasks with a variety of object properties. In the

experiments section, we compare the performance of our proposed model against

two representative baselines of visual MPC and one-shot imitation learning, and

demonstrate its efficacy in complex goal-conditioned pushing and pick-and-place

tasks. Furthermore, we show that our method transfers well to challenging, unseen

environments with heavy clutter, visual distortions or novel object geometries,

accomplished without the need of domain randomisation which is commonly

8 1.3. Thesis Outline

employed to make VMC more robust. All in all, GEECO offers a novel approach

to learning data-efficient and versatile skill primitives for manipulation.

1.3.3 Motion Planning Through Latent Space with Prim-
itive Shapes

As discussed earlier in this chapter, traditional motion planning approaches are

confronted with computational challenges and struggle to specify or handle multiple

constraints simultaneously. Common approaches to real-time re-planning mainly

build on Potential Field methods [22, 46]. While the potential field principle is widely

used, substantial shortcomings that are inherent to this principle have been identified

in [50]. In comparison to our work, they struggle to handle additional constraints

on properties that cannot be fully determined by robot joint configuration.

With the advance of deep learning, learning-based approaches offer a new

perspective to motion planning with the potential of bypassing existing limitations.

One possible approach to motion planning is learning inverse kinematics (IK), which

can provide a solution of the joint configuration for the goal that can be further used

to plan a path. As a highlight from the literature, Bócsi et al. [6] offer a different

view to motion planning and to deep learning by building a statistical model of robot

system from experience. In greater detail, they attempt to apply a kernel-based

density estimation to learn a joint distribution between end-effector positions and

joint angles. By leveraging this joint distribution, a solution is proposed to an

ill-posed IK problem for robot arms with redundant degrees of freedom (DoF).

Inspired by [66, 95], we posit that by employing a deep generative model, we can

learn a structured latent representation capturing the kinematics relationship that

can be useful for downstream motion planning tasks.

We propose to learn a generative model of robot states by using a variational

autoencoder (VAE) and a neural network-based high-level performance predictor

to incorporate desired constraints. More specifically, we train a collision predictor

for collision avoidance. The iterative optimisation process in the latent space

translates to a sequence of joint angles, generating a motion plan. The experimental

1. Introduction 9

results are presented using a 7-DoF panda arm in a scenario with simple primitive

shaped colliders in both simulated environment and the real world. Our approach

achieves performance in line with established traditional approaches in terms of

reaching success rate, and outperforms most baselines in terms of planning time.

The improvement of the planning time stems from the design of our approach, in

that it only performs a forward and backward pass of the neural network at every

planning step, irrespective to the complexity of the scene setup. It is our belief that

this generative approach is an interesting alternative to explore for motion planning.

1.3.4 Generalisation of Motion Planning from State-Based
Observations to Complex Scenes

Prior work [38] introduces motion planning through learning a structured latent

space of kinematically feasible robot states and optimisation in such latent space

for planning. However, the collision predictor relies on state-based inputs consisting

of the positions and sizes of the primitive shaped colliders, limiting its applicability

to complex scenes in the real world. In contrast, we learn a collision predictor

mapping the point cloud of the scene and the structured latent representation to

collision probability. Additionally, we incorporate an orientation constraint of the

end-effector by taking it into account in the generative model. The orientation

constraint can be useful when trying to reach a pre-grasp pose. Algorithmically, we

improve the multi-constraint optimisation process in prior work [38] by performing

explicit collision checking before execution of a joint configuration and rescaling

the coefficients of different losses to deviate from the original route and focus on

collision avoidance, resulting in fewer collision cases. For evaluation, we compare

our method against several representative motion planning baselines in a complex

simulated tabletop environment of a variety of objects and demonstrate its efficacy

and robustness by achieving competitive reaching success and much improved

planning time. We further illustrate the reactive behaviour of our method in a

challenging scenario of reaching a moving target while avoiding a moving obstacle

in both the simulated and the real-world environments. In short, we are able to

10 1.4. Publications

carry out motion planning in high-dimensional space from observation-based inputs

while satisfying multiple constraints simultaneously.

1.4 Publications

The following publications, listed in their order of appearance, form the main

body of chapter 4 to 7.

1. Chia-Man Hung, Li Sun, Yizhe Wu, Ioannis Havoutis, Ingmar Posner. “In-

trospective Visuomotor Control: Exploiting Uncertainty in Deep Visuomotor

Control for Failure Recovery”. In: IEEE International Conference on Robotics

and Automation (ICRA). June 2021. [37]

2. Oliver Groth, Chia-Man Hung, Andrea Vedaldi, Ingmar Posner. “Goal-

Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives”.

In: IEEE International Conference on Robotics and Automation (ICRA).

June 2021. [28]

3. Chia-Man Hung, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones,

Martin Engelcke, Ioannis Havoutis, Ingmar Posner. “Reaching Through Latent

Space: From Joint Statistics to Path Planning in Manipulation”. In: IEEE

Robotics and Automation Letters (RA-L). Feb. 2022. [38]

4. Jun Yamada∗, Chia-Man Hung∗, Jack Collins, Ioannis Havoutis, Ingmar

Posner. “Leveraging Scene Embeddings for Gradient-Based Motion Planning

in Latent Space”. Under review at: IEEE International Conference on Robotics

and Automation (ICRA). June 2023. ∗ Equal contribution.

1. Introduction 11

(a)

(c)(b)

(d)

Figure 1.1: An overview of the key contributions in this thesis. (a) In chapter 4, we
employ a probabilistic approach to predict policy uncertainty, which is used to guide
the robot to enter a failure recovery mode and rescue it from out-of-distribution states.
(b) GEECO (chapter 5) is a goal-conditioned visuomotor control trained in an end-to-
end manner. It learns an approximation of the task dynamics and transfers to unseen
scenarios. (c) LSPP (chapter 6) is a novel approach to motion planning by learning the
joint distribution of robot poses and end-effector positions in a generative model and
iteratively performing back propagation in the latent space. (d) In chapter 7, AMP-LS
extends LSPP to incorporate orientation constraints and trains an obstacle collision
predictor based on point cloud scene observation to generalise motion planning to complex
scenes. It is shown to handle both open and closed-loop planning.

12

2
Background

In this chapter, we present the context of robot learning for manipulation and

an overview of the topics related to the central theme of the thesis: visuomotor

control and latent space planning for robot manipulation. We start in section 2.1

by introducing robot manipulation and providing a summary of learning problems

in manipulation. This section adheres to the categorisation of learning problems by

Kroemer et al. [53]. Following the summary, a learning problem is introduced in

more details in each subsection. We limit the subsections to only discussing the

subcategories of learning problems that fall within the scope of our work. At the

end of individual subcategories, we illustrate how our exploration and investigation

fit into the larger picture. Afterwards, section 2.2 is dedicated to related work. We

outline in section 2.2.1 background knowledge about visuomotor control on top

of which the first half of the thesis is built. Finally, we conclude in section 2.2.2

by elaborating the evolution of latent space planning and the pieces of pioneer

work that inspire the second half of the thesis.

2.1 Robot Learning for Manipulation

Robot manipulation refers to the study of ways robot systems interact with objects

around them. Common tasks include reaching a target, grasping a bottle, stacking

13

14 2.1. Robot Learning for Manipulation

Figure 2.1: Example manipulation skills: reaching a target, grasping a bottle, stacking
cubes, opening a door, pouring milk into a cup, pressing a button.

cubes, opening a door, pouring water, pressing a button, pushing a chair, inserting

an item, etc (cf. fig. 2.1). A robot manipulator typically consists of a robot arm

and an end-effector. The simplest end-effector option is perhaps a suction cup [84,

102], enabling a robot to perform simple pick-and-place tasks without the need

of precise grasping. It may however be limited in more complex tasks, such as

reorienting an object, inserting a peg, and pressing a button. More sophisticated

end-effectors, for instance a mutli-finger hand, allow for more complex in-hand

manipulation tasks [10, 100] like positioning a pencil, cutting with scissors, and

using knife and fork. Throughout this thesis, we focus on parallel grippers, which

strikes the balance between the simplicity of the end-effector and the range of tasks.

Manipulators are currently widely used in the industry, in particular the

manufacturing industry [5]. Most of the time, arms are fixed to mounts on

an assembly line, controlled by teleoperation [55] or pre-programmed sequences

of commands using a mix of techniques namely object detection and open-loop

motion planning. Traditional non learning-based approaches focusing on designing

repetitive systematic behaviours may be suitable in precise manufacturing settings,

but naturally fall short in scenarios with unsystematic environmental variations

2. Background 15

in which neither the robot nor its creators have encountered before. A significant

amount of research has been carried out on using learning-based approaches to

solve robot manipulation tasks.

As described in [53], learning problems posed by manipulation tasks can be

broadly placed into five categories: (a) learning object and environment representa-

tions; (b) learning a transition model of the environment; (c) learning motor skills; (d)

learning to characterise motor skills; (e) learning compositional and hierarchical task

structures. In the following, we provide more details on what each problem entails.

2.1.1 Object and Environment Representations

In manipulation, information about the environment and the objects within the

environment is usually not given. Robots observe and sometimes even interact

with the environment to acquire such knowledge. Learning object properties and

selecting useful features can further aid the generalisation across the task family.

Object Representations. Robots interact with a world composed of objects

that have different properties. Some objects are static, such as wall, floor and

counter, while some are movable, such as box, cup, door and handle. To accomplish

a task, a robot first needs to learn a representation of objects in its environment.

Furthermore, this representation can potentially render learned skills versatile by

transferring or adapting to objects with similar attributes.

What object representations need to capture depends on task variations. Broadly

speaking, task variations can be categorised into within-task variations and across-

task variations. While within-task variations capture features a manipulation action

can change, such as object pose and object shape for deformable or divisible objects,

across-task variations are attributes that are fixed in any specific task that can

aid generalisation across tasks, such as material properties.

In both chapters 4 and 5, object representations are implicitly encoded by a

neural network from the visual observations, and learned in an end-to-end manner.

While chapter 4 only considers within-task variations, chapter 5 attempts to include

16 2.1. Robot Learning for Manipulation

across-task variations, in particular object geometries and colours. By leveraging

the dynamic images representation that helps the inference process retain the object

positions of the current observation and the goal image, while ignoring all static

parts of the scene, our proposed method is able to generalise across tasks.

In the context of motion planning, in chapter 6, we assume complete knowledge

of the primitive shaped obstacles in the scene, represented by their positions and

sizes. This representation limits the applications to complex scenes that cannot

be easily factorised into primitive shapes. In chapter 7, we reason at a task-level

and encode the entire scene from point cloud observation, enabling our approach

to generalise to complex scenes.

Passive and Interactive Perception. Depending on whether physical inter-

action with the environment is involved, robot perception can be divided into

passive perception and interactive perception. Passive perception describes non-

interactive perception, for example localising and classifying an object from a

camera image. In interactive perception, the robot physically interacts with the

environment to acquire a better understanding of its surroundings, for example

picking an object up to estimate its weight or touching objects for tactile sensing.

This kind of perception often requires more time and energy to perform, but has

the advantage of disambiguation between similar scenarios. Throughout this thesis,

we perform passive perception with a static third-person camera mounted at an

angle to observe the task scene.

Learning Object Properties. To learn about the objects in the scene, we

are first tasked with distinguishing them, which is formulated as a segmentation

problem. Once an object is identified, depending on what the robot wants to do

with it, the robot may need to learn about interaction-relevant properties such

as graspability and stackability; dynamics properties such as weight and centre

of mass; or material properties such as size, shape, and friction coefficient. If an

object has a more complex structure, it may be necessary to learn about its DoF

2. Background 17

and kinematic chain. Again, in chapters 4 and 5, object properties are implicitly

learned in an end-to-end manner.

Feature Learning and Selection. While having complete information of all

object properties can be advantageous, when performing a manipulation task, often

only a small set of features is relevant. Learning and selecting relevant features

is a key aspect of learning useful object representations. Unsupervised learning

approaches extract information from unlabelled data by capturing the correlations

in the data while discarding noisy signals. They typically employ dimensionailty

reduction or clustering techniques to filter out the most important information

to a given task. Supervised approaches on the other hand, learn features as part

of the model training process from existing data labels. In chapters 4 and 5, a

deep neural network model is used to encode high-dimensional visual inputs as

an alternative automatic method for feature learning and selection. In chapters

6 and 7, we incorporate architectural priors for learning useful features. More

specifically, we employ a variational autoencoder to capture the correlation between

joint configurations and end-effector poses.

2.1.2 Transition Models

To accomplish a task, a robot takes actions that change the state of the environment.

Learning a transition model capturing the way states change in response to actions

is a common approach in robot learning.

A transition model is a deterministic or stochastic distribution over the next

states given the current state and action. It can also depend on some context

state invariant to actions, separated from the state of the robot and the objects.

Generally, in manipulation tasks, robots operate in continuous state space. Action

space is often continuous, but can sometimes be discrete, e.g., opening or closing

the gripper can be formulated as a binary action. Common continuous models

include regression models, for instance neural networks, Gaussian processes [91],

Gaussian mixture models [76], and linear regressions. Discrete transition models

18 2.1. Robot Learning for Manipulation

are typically used to capture high-level tasks. Basic models include tabular models

and finite state machine [67]. Hybrid models combine both continuous and discrete

aspects of the transition model, often required in hierarchical tasks that involve

planning high-level actions in a discrete model and using a low-level continuous

model for accomplishing individual sub-tasks.

In chapters 4 and 5, our approach does not learn any transition model, but

rather learns to predict the next action conditioned on the history by using a neural

network-based regression model. In chapters 6 and 7, we do not learn any transition

model either. Instead, we embed the states into latent representations, and plan a

sequence of latent representations that translates to a motion plan.

2.1.3 Skill Policies

One vital component for a robot to perform a manipulation task is learning a skill

policy (or skill controller). There are different types of action spaces and policies

can be categorised by their parameterisation. Two major approaches to learning

a skill policy are reinforcement learning and imitation learning. In reinforcement

learning, a robot learns from its experience in the world, while in imitation learning,

a robot learns from expert demonstrations. In this subsection, we only discuss

imitation learning as it is more relevant to the following chapters. Once a skill is

learned, there are various options for it to transfer to solve other tasks.

Action Spaces. From a low-level point of view, a robot needs to send a control

signal to its actuators to physically perform actions. Robots that are difficult to

model may benefit from sending direct control signals. However, in most cases, it

is more practical to have an additional layer of controller between the policy and

the actuator. A commonly used controller is a PID controller where the action

space of the policy can be desired positions, velocities and accelerations in the joint

space or for the end-effector in Cartesian space. In general, learning a skill policy in

Cartesian space is easier as the dimension of the space is smaller. For example, in

chapters 4 and 5, we learn a skill policy with actions defined as delta end-effector

2. Background 19

position in Cartesian space. In chapters 6 and 7, our trajectories are represented

as sequences of joint positions by the definition of motion planning.

Policy Structures. Parameterisation is often imposed on policies to encode a

prior and improve data efficiency. However, there is a trade-off between represen-

tational power of the policy and data efficiency. If the restrictions imposed by

the parameterisation does not respect the underlying structure of the task, it may

significantly negatively impact the performance. The choice of parameterisation

is thus an essential component of a policy.

Non-parametric policies are more expressive representations, but also less data

efficient. Examples include Gaussian processes [72], locally-weighted regression, and

Riemannian Motion Policies [74]. This category of polices is typically flexible and

can be applied to manipulation tasks with little domain knowledge, but requires

a large amount of data. Parametric policies, on the other hand, are restricted by

their underlying representation. Common examples include neural networks and

dynamic movement primitives [40]. The sample efficiency depends on the number

of restrictions that are placed on the structure of the policy. In chapters 4 to 7, all

our policies are represented by neural networks. Our VMC neural networks are

highly parameterised (i.e., using a large amount of parameters), leading to higher

degree of generalisation, at the cost of requiring more data.

Imitation Learning. Imitation learning is a form of learning from demon-

stration trajectories. Demonstrations are typically collected in the real world

by teleoperation [103] (where the robot is controlled remotely by a human) or

kinesthetic teaching [51] (where the robot is physically guided through the task

by a human), and in simulation by teleoperation [55] or through the use of a

hand-designed expert policy [42]. Behavioural cloning [89] is perhaps the most

straight-forward way of leveraging demonstrations to learn a skill policy. The

demonstrations provide state-action pairs that can be used as training data to learn

the policy parameters that reproduce the demonstrated behaviours. In the context

of manipulation, in chapters 4 and 5, our controllers are built upon End-to-End

20 2.1. Robot Learning for Manipulation

Visuomotor Control (E2EVMC) [42]. E2EVMC is in essence a type of behavioural

cloning that continuously maps a sliding window of past images and proprioceptive

features to the next actions and some auxiliary outputs (cf. section 3.1).

Skill Transfer. In our earlier example of a task definition, a parameterised skill

of putting a red cube into a blue basket may have parts that are in common with

another skill of putting a yellow cube into a green basket. It may be desirable to

have a task context parameter that is changing depending on the specific task to

facilitate skill transfer. This task context parameter may be tuned when given a

new task rather than training a new skill policy from scratch.

Rather than reusing a skill, meta-learning learns a distribution of tasks. When

given a particular task in that distribution in the future, it can be learned more

efficiently. A representative work Model Agnostic Meta-Learning (MAML) [19]

learns easily adaptable model parameters through gradient descent, such that it

can solve new learning tasks using only a small number of training samples.

Collecting demonstrations and training policies in simulation is often easier

than doing it directly on a real physical robot. However, there may be noise or

inaccuracies that are not entirely captured by the simulation. When it comes to

deploying in the real world, domain adaptation techniques are often required. To

bridge the gap from sim to real, a common technique is domain randomisation,

which randomises environmental attributes, such as dynamics in simulation, texture

of the objects, to make the system invariant to those changes. E2EVMC [42]

employs domain randomisation technique to transfer pick-and-place tasks from

sim to real successfully.

2.1.4 Characterising Skills by Preconditions and Effects

Before a skill policy is applied, the robot needs to understand the circumstances

under which it can be executed. Preconditions is a term used to describe a model

of those circumstances. Similarly, after a skill is executed, the robot needs to

know whether it has achieved the desired outcomes. Postconditions describes a

2. Background 21

model of those outcomes. Preconditions and postconditions can be used jointly

to sequence skills for planning a long task as a sequence of sub-tasks. In the

tasks that we consider throughout the thesis, we assume that the initial task state

already satisfies the preconditions and that we can directly observe whether an

execution is successful or not.

2.1.5 Compositional and Hierarchical Task Structures

Manipulation tasks sometimes have hierarchical structures and it can be helpful

to decompose them into sub-tasks. Decomposing tasks has the advantage of

breaking long tasks into shorter sub-tasks that can be solved with individual

skills. For example, if a task consist of multiple pick-and-place tasks, solving it

with individual pick-and-place skill makes the entire task more manageable and

allows for the reuse of the same skill. Although it is also an important learning

problem in manipulation, it is out of scope as the tasks that we consider do not

have this hierarchical task structure.

2.2 Related Work

In this section, we present work related to the various aspects of visuomotor control

and latent space planning addressed in this thesis.

2.2.1 Visuomotor Control for Robot Manipulation

In the previous section, we have described the main learning challenges in robot

manipulation. Among those challenges, we concentrate on learning motor skills in

combination with learning object and environment representations. In neuroscience,

“visuomotor integration is the coordination of neuronal activity between visual-

related and motor-related parts of the brain in order to influence behavior and

perception,” as defined in [83]. Similarly, in robotics, we regard visuomotor control

as the coordination between vision sensors and motion control for the completion of

a task. Based on the current visual inputs from vision sensors, the robot computes

and executes motion commands, which in turn gives new visual feedback.

22 2.2. Related Work

Early work on visual servoing focuses on using real-time feedback from vision

sensors to control a robot’s motion and does not consider long-term planning. In

order to accomplish a task, it attempts to match the visual input to a target image.

Model-predictive control plans robot motion from visual feedback by learning a

forward model of the world, which forecasts the outcome of an action. Actions are

sampled and selected to match the predicted outcome to the goal. Another line

of work learns from demonstrations and regresses the current visual input to the

next action. In the following, we survey those three established approaches to

visuomotor control.

Visual Servoing. Closed-loop control of a robot using visual feedback is referred

to as visual servoing, and was first introduced in [34] to distinguish it from earlier

work on open-loop robot control. Position/Pose-Based Visual Servoing (PBVS) [2,

12, 93, 97] typically derives the current pose of the robot end-effector from a

depth image and generates an ideal pose for the object of interest. The error is

then formulated as the difference between the two poses and is updated at each

frame. PBVS allows easier trajectory planning, e.g., obstacle avoidance, as it is

controlled directly in Cartesian space. However, PBVS is not very often adopted

in servoing tasks because it relies on a model to generate a target pose and most

importantly, it requires precise system calibration of the camera and between the

camera and the robot for accurate pose estimation. Unlike PBVS, Image-Based

Visual Servoing (IBVS) [8, 32, 63] extracts image features from visual observations,

and formulates the error function in 2D image plane. IBVS is considered to be

robust to system calibration errors, but typically relies on hand-crafted image

features for object detection. A comprehensive survey on visual servoing is provided

by Kragic et al. [52]. Although visual servoing methods are able to adapt to

dynamic environments, the complexity of a manipulation task can easily exceed

the capabilities of visual servoing. The manipulation of objects typically involves

object recognition, servoing onto the object, grasping, placement of the object;

visual servoing only solves part of the task.

2. Background 23

Model-Predictive Control. To plan and control the robot motion, the capability

of predicting the effects in state or image space is required. Conventional planning

methods work on robot state space without consideration of the physical interaction

between the end-effector and the object. To plan robot motion from visual feedback,

an established line of research is to use visual model-predictive control. The

idea is to learn a forward model of the world, which forecasts the outcome of an

action. In the case of robot control, a popular approach is to learn the state-action

transition models in a latent feature embedding space, which are further used

for motion planning [1, 92, 101]. Likewise, visual foresight [20] leverages a deep

video prediction model to plan the end-effector motion by sampling actions leading

to a state which approximates the goal image. Afterwards, visual foresight is

adapted to visual navigation by driving the robot through topological key-frame

images [35]. However, visual model-predictive control relies on learning a good

forward model, and sampling suitable actions is not only computationally expensive

but also requires finding a good action distribution.

End-to-End Imitation Learning. Deep learning has been successfully used in

the visual guidance for robot grasping. Viereck et al. [90] integrate deep grasping

detection with end-effector control to close the loop of perception and grasping.

Then, deep neural networks are used as policy network for imitation learning tasks

to infer robot motor commands from the visual input. Levine et al. [60] were

the first to employ an end-to-end trained neural network to learn visual motor

skills from admittance control examples, yet their approach requires months of

training and multiple robots. In end-to-end visuomotor control [42], a similar

network architecture is used for joint velocity control for a specific multi-stage

task, and domain randomisation through generating procedural textures is used to

achieve a zeros-shot sim-to-real adaption. Now, end-to-end imitation learning has

been employed to address more challenging tasks, such as autonomous driving [69]

and in-hand manipulation [41].

24 2.2. Related Work

2.2.2 Latent Space Planning for Robot Manipulation

Latent space planning addresses manipulation tasks by planning from latent

dynamics or planning as optimisation in latent space. It should be noted that

if it leverages visual observations, it can be regarded as visuomotor control in the

sense that it coordinates vision inputs and motion control. Nonetheless, we separate

it in a new subsection as it describes a new concept.

Planning from Latent Dynamics. The idea of learning embedding spaces from

high-dimensional space and then learning forward dynamics models operating

on this learned latent space for planning has been explored in the literature.

L2RRT [39] learns latent dynamics and a collision predictor conditioned on adjacent

latent representations, and applies a sampling-based motion planning algorithm

on the learned latent space to plan a collision-free trajectory. Universal Planning

Networks [85] learn representations of high-dimensional observations and optimise

a global motion plan from the unrolling of a learned forward model by gradient

descent. The Embed-to-Control works [3, 92] perform optimal control in the latent

space of a deep generative model in which the dynamics is constrained to be locally

linear. Based on the previous models, DVBFs [45] further impose a Markovian

assumption on the latent space and leverage a variational inference mechanism

to scale to large datasets. A recent line of work combines the latent dynamics

model with reinforcement learning. PlaNet [31] performs model-based RL in a

learned latent dynamics model for planning. Dreamer [30] uses an actor-critic

method to learn a parametric policy by propagating gradients of multi-step values

back through learned latent dynamics. However, models that plan from latent

dynamics resolve planning tasks primarily by rolling out trajectories in time, finding

a promising trajectory, and performing the given actions. In this respect, these

approaches tend to become intractable for longer time horizons. Most recently,

Director [29] learns hierarchical behaviors by compressing goal representations and

planning in the latent space of PlaNet’s world model.

2. Background 25

Planning as Optimisation in Latent Space. Instead of planning from latent

dynamics, planning directly in latent space through Activation Maximisation is an

emerging research area. Activation Maximisation was first introduced in [18] as a

means to visualise higher-layer features of a deep neural network. A remarkably

different use was put forward when this concept was later adopted for 3D tool

synthesis [95] and quadruped locomotion [66]. The idea is to frame planning as

an optimisation process in the structured latent space of a deep generative model.

The optimisation is driven by constraints specified by task-dependant performance

predictors. By decoding the latent representations, a path in the latent space is

then translated to a path in tool state space in [95] or robot joint space in [66]. The

nature of this approach makes it suitable for both open and closed-loop planning.

In chapters 6 and 7, we adopt this concept for motion planning.

26

3
Preliminaries

In this chapter, we present concept preliminaries that are at the heart of the

development of this thesis. The first half of our work primarily extends end-to-

end visuomotor control and the second half employs a deep generative model.

Uncertainty estimation enables failure recovery in chapter 4.

3.1 End-to-End Visuomotor Control

End-to-End Visuomotor Control (E2EVMC) [42] learns a skill policy from tra-

jectory demonstrations in a supervised manner. The model as shown in fig. 3.1

continuously maps a sliding window of size K of past visual inputs i.e., RGB images

{It−K+1, . . . , It} and proprioceptive features i.e., joint angles {xt−K+1, . . . ,xt} to

the next joint velocity command ûJ and the next discrete gripper action ûGRP

(open, close or no-op) as well as the end-effector position q̂EE and object position

q̂OBJ as auxiliary targets with the following loss objective:

Ltotal = MSE(ûJ ,uJ) + CCE(ûGRP ,uGRP) + MSE(q̂EE,qEE) + MSE(q̂OBJ ,qOBJ),

(3.1)

where MSE and CCE represent mean squared error and categorical cross-entropy

respectively. The model is trained end-to-end with stochastic gradient descent.

27

28 3.2. Uncertainty Estimation in Deep Learning

Figure 3.1: E2EVMC [42] model architecture. The current visual observation It

is passed through a CNN ψOBS and concatenated with the proprioceptive feature xt to
form the current state representation st. This state representation st is then fed into an
LSTM to obtain the current embedding et. The LSTM embedding et is finally passed
through a fully connected layer and decoded into action commands ûJ and ûGRP , as well
as auxiliary position predictions q̂EE and q̂OBJ .

In our work, we use delta end-effector position command rather than joint

velocity command ûJ as a model output. The dimensionality reduction of action

command slightly simplifies the policy learning and we have found this to be less

prone to the accumulated error over a long time horizon.

3.2 Uncertainty Estimation in Deep Learning

Neural networks have been widely applied to real-world applications in different

fields, yet basic neural networks do not provide reliable uncertainty estimates for

their decisions. Such inability often results in overconfident or underconfident

predictions, thus making it difficult to trust the outcomes. This section first

identifies different types of uncertainty and then introduces a Bayesian approach

for uncertainty estimation in neural networks.

3.2.1 Types of Uncertainty

In probabilistic modelling, it is essential to distinguish between two types of

uncertainty: aleatoric uncertainty and epistemic uncertainty. Aleatoric uncertainty

3. Preliminaries 29

refers to the notion of randomness. For example, when we flip a coin or roll a dice,

there is equal probability to each outcome (assuming a fair coin or dice). That is, the

outcome of an experiment is due to inherent randomness (atmospheric noise) that

cannot be reduced by any additional source of information. In contrast, epistemic

uncertainty refers to uncertainty caused by a lack of knowledge. For example, if a

robot attempting to open a door does not have information about whether the door

is locked, its prediction is uncertain due to its lack of knowledge. In chapter 4, we

adopt a Bayesian approach that explicitly captures the epistemic uncertainty in the

model predictions by representing probability distributions over different models.

3.2.2 Bayesian Modelling

Given training inputs X = {x1, . . . ,xN} and their corresponding outputs Y =

{y1, . . . ,yN}, we would like to find the parameters θ of a function y = fθ(x)

that is likely to have generated the data. In Bayesian modelling, we assume a

prior distribution over the space of parameters p(θ). This represents the prior

belief we have on our model before any data point is observed. We also define

a likelihood distribution p(y|x, θ) as the probability distribution of outputs given

an input and some parameter setting θ.

Given a new input point x∗ and the training data X,Y, we perform the inference

process to predict a new output y∗:

p(y∗|x∗,X,Y) =
∫
p(y∗|x∗, θ)p(θ|X,Y)dθ. (3.2)

In this integration, the posterior distribution p(θ|X,Y) can be further decomposed

by applying Bayes’ theorem:

p(θ|X,Y) = p(Y|X, θ)p(θ)
p(Y|X) . (3.3)

The normaliser in eq. (3.3) is called model evidence:

p(Y|X) =
∫
p(Y|X, θ)p(θ)dθ. (3.4)

30 3.2. Uncertainty Estimation in Deep Learning

This term is also called marginal likelihood as this integration marginalises the

likelihood over θ. The integral in eq. (3.4) is in general intractable and approximation

techniques are typically applied.

3.2.3 Variational Inference

Among different approximation techniques, variational inference approaches approxi-

mate the posterior distribution by optimising over a family of tractable distributions.

We define an approximating variational distribution q(θ) and we would like it to be

as close as possible to the posterior distribution p(θ|X,Y). Kullback–Leibler (KL)

divergence is commonly used to measure the similarity between two probability

distributions, and is thus adopted here:

KL(q(θ) || p(θ|X,Y)) =
∫
q(θ) log q(θ)

p(θ|X,Y)dθ. (3.5)

Due to the posterior distribution of which the integral of the normaliser is in

general intractable to compute, the KL divergence cannot be optimised directly.

An evidence lower bound (ELBO) is optimised instead:

LELBO =
∫
q(θ) log p(Y|X, θ)

q(θ) dθ, (3.6)

and the following holds:

KL(q(θ) || p(θ|X,Y)) = −LELBO + log p(Y|X). (3.7)

We denote q∗(θ) as a minimum of the KL divergence in eq. (3.7). This optimisation

allows us to approximate the predictive distribution (cf. eq. (3.2)):

q∗(y∗|x∗) =
∫
p(y∗|x∗, θ)q∗(θ)dθ. (3.8)

3.2.4 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) frame neural networks as Bayesian models

by inferring distributions over the networks’ weights. Monte Carlo Dropout

casts existing stochastic elements of deep learning as variational inference by

formulating dropout layers as Bernoulli distributed random variables, so that training

3. Preliminaries 31

a neural network with dropout layers can be viewed as performing approximate

variational inference. In practice, we train a neural network with dropout layers until

convergence. At test time, activating the dropout layers is equivalent to sampling

from the posterior distribution {θ̂1, . . . , θ̂T } (assuming we sample T times). Passing

a new input x∗ through the neural networks parameterised by {θ̂1, . . . , θ̂T }, we

obtain output samples from stochastic forward passes {fθ̂1
(x∗), . . . , fθ̂T

(x∗)}. From

these stochastic samples from an approximate predictive distribution, we can get an

empirical estimator for the predictive mean and the predictive variance (uncertainty)

of the predictive distribution (cf. sections 1.5 and 3.3, and eq. (3.16) of [23]):

E [y∗] ≈ 1
T

T∑
i=1

fθ̂i
(x∗)

Var [y∗] ≈ τ−1ID + 1
T

T∑
i=1

fθ̂i
(x∗)Tfθ̂i

(x∗) − E [y∗]T E [y∗] ,
(3.9)

where τ is the model precision of the Gaussian likelihood (for regression) and D is

the output dimensionality. In the expression of the predictive variance, the first

term (inverse model precision) captures the aleatoric uncertainty and the remaining

terms (obtained from stochastic forward passes) capture the epistemic uncertainty

(cf. section 6.7 of [23]). Besides BNNs, ensemble of neural networks [56, 64] is

another widely used uncertainty estimation approach. We refer the reader to [27]

for a detailed survey of uncertainty in deep neural networks.

3.3 Deep Generative Modelling

In discriminative modelling, one aims to learn a predictor given the observations,

while in generative modelling, one aims to learn the joint distribution over all

the variables. Conceptually, generative modelling is a way to simulate how the

data is generated in the real world. Deep generative modelling attempts to do

so by approximating the underlying generative process as deep neural networks

i.e., highly parameterised neural networks. Generative modelling can be helpful

in learning abstractions that can be used for downstream tasks. In particular,

32 3.3. Deep Generative Modelling

Figure 3.2: VAE assumption: A hidden variable z generates an observation x.

variational autoencoders (VAEs) [48, 77] have considerably served in the quest of

finding compact disentangled variations in data for unsupervised representation.

Suppose there exists a hidden variable z which generates an observation x (cf.

fig. 3.2). We can only observe x, but we would like to infer z. In other words, we

would like to compute p(z|x). By applying Bayes’ theorem, we obtain:

p(z|x) = p(x|z)p(z)
p(x) . (3.10)

Same as previously, the integral to compute p(x) is often intractable.

p(x) =
∫
p(x|z)p(z)dz. (3.11)

We use a variational distribution q(z|x) to approximate p(z|x). In variational

inference, optimising the KL divergence KL(q(z|x) || p(z|x)) can be cast into

optimising the ELBO loss:

LELBO = Ez∼q(z|x) log p(x|z) − KL(q(z|x) || p(z)). (3.12)

From a different point of view, a VAE defines an encoder qϕ(z|x) and a

decoder pθ(x|z), where z is a learned latent representation (cf. fig. 3.3). In

the variational inference framework, a VAE is trained by minimising the ELBO

loss (with parameterisation θ and ϕ):

Figure 3.3: VAE model architecture: an input x is passed through the encoder qϕ(z|x)
and embedded to a latent representation z. This representation is then passed through
the decoder pθ(x|z) and reconstructed as x̂.

3. Preliminaries 33

LELBO = Ez∼qϕ(z|x) log pθ(x|z) − KL(qϕ(z|x) || p(z)). (3.13)

The first term represents the reconstruction loss. The second term, the KL diver-

gence, ensures that the latent distribution qϕ(z|x) is close to the prior distribution

p(z), which regularises the latent space. The reader is referred to [81] for an

introduction to deep generative modelling and [49] for an introduction to VAEs.

34

4
Introspective Visuomotor Control:

Exploiting Uncertainty in Deep
Visuomotor Control for Failure Recovery

In this chapter, to address the problem of distribution shift in imitation learning,

we investigate the use of uncertainty as a means to guide the visuomotor control

model to recovery from failures before the end of a policy rollout. We adopt a

probabilistic approach and propose a simple model to predict policy uncertainty.

We demonstrate the effectiveness of this policy uncertainty as an indicator of task

failure by analysing their correlation. Together with our proposed failure recovery

strategy, we observe performance gains over the original visuomotor control model

and several basic recovery strategy baselines on different manipulation tasks. This

work is published as:

Chia-Man Hung, Li Sun, Yizhe Wu, Ioannis Havoutis, Ingmar Posner. “Introspective

Visuomotor Control: Exploiting Uncertainty in Deep Visuomotor Control for Failure

Recovery”. In: IEEE International Conference on Robotics and Automation (ICRA).

June 2021. (© 2021 IEEE. Reprinted, with permission, from [37].)

35

Introspective Visuomotor Control: Exploiting Uncertainty in Deep
Visuomotor Control for Failure Recovery

Chia-Man Hung1,2, Li Sun1, Yizhe Wu1, Ioannis Havoutis2, Ingmar Posner1

Abstract— End-to-end visuomotor control is emerging as a
compelling solution for robot manipulation tasks. However,
imitation learning-based visuomotor control approaches tend to
suffer from a common limitation, lacking the ability to recover
from an out-of-distribution state caused by compounding er-
rors. In this paper, instead of using tactile feedback or explicitly
detecting the failure through vision, we investigate using the
uncertainty of a policy neural network. We propose a novel
uncertainty-based approach to detect and recover from failure
cases. Our hypothesis is that policy uncertainties can implicitly
indicate the potential failures in the visuomotor control task and
that robot states with minimum uncertainty are more likely to
lead to task success. To recover from high uncertainty cases, the
robot monitors its uncertainty along a trajectory and explores
possible actions in the state-action space to bring itself to a
more certain state. Our experiments verify this hypothesis and
show a significant improvement on task success rate: 12% in
pushing, 15% in pick-and-reach and 22% in pick-and-place.

I. INTRODUCTION
Deep visuomotor control (VMC) is an emerging research

area for closed-loop robot manipulation, with applications
in dexterous manipulation, such as manufacturing and pack-
ing. Compared to conventional vision-based manipulation
approaches, deep VMC aims to learn an end-to-end policy
to bridge the gap between robot perception and control, as
an alternative to explicitly modelling the object position/pose
and planning the trajectories in Cartesian space.

The existing works on deep VMC mainly focus on domain
randomisation [1], to transfer visuomotor skills from simu-
lation to the real world [2], [3]; or one-shot learning [4], [5],
to generalise visuomotor skills to novel tasks when large-
scale demonstration is not available. In these works, imitation
learning is used to train a policy network to predict motor
commands or end-effector actions from raw image obser-
vations. Consequently, continuous motor commands can be
generated, closing the loop of perception and manipulation.
However, with imitation learning, the robot may fall into an
unknown state-space to which the policy does not generalise,
where it is likely to fail. Early diagnosis of failure cases is
thus important for policy generalisation but an open question
in deep VMC research.

Instead of using vision or tactile feedback to detect failure
cases [6], [7], we extend the widely-used deterministic
policy network to an introspective Bayesian network. The
uncertainty obtained by this Bayesian network is then used
to detect the failure status. More importantly, as a supplement
to the existing deep VMC methods, we propose a recovery

1Applied AI Lab (A2I), 2Dynamic Robot Systems (DRS)
Oxford Robotics Institute (ORI), University of Oxford
Correspondence to: chiaman@robots.ox.ac.uk

Fig. 1. An overview of the proposed VMC approach with failure case
recovery. In this example, the task is to push the red cube onto the target.

mechanism to rescue the manipulator when a potential failure
is detected, where a predictive model can learn the intuitive
uncertainty to indicate the status of manipulation without the
need of simulating the manipulation using a physics engine.

In summary, our contributions are three-fold: First, we
extend VMC to a probabilistic model which is able to esti-
mate its epistemic uncertainty. Second, we propose a simple
model to predict the VMC policy uncertainty conditioned
on the action without simulating it. Finally, leveraging the
estimated policy uncertainty, we propose a strategy to detect
and recover from failures, thereby improving the success rate
of a robot manipulation task.

II. RELATED WORK

The problem we are considering is based on learning
robot control from visual feedback and monitoring policy
uncertainty to optimise overall task success rate. Our solution
builds upon visuomotor control, uncertainty estimation and
failure case recovery.

Visuomotor Control. To plan robot motion from visual
feedback, an established line of research is to use visual
model-predictive control. The idea is to learn a forward
model of the world, which forecasts the outcome of an action.
In the case of robot control, a popular approach is to learn the
state-action transition models in a latent feature embedding
space, which are further used for motion planning [8], [9],
[10]. Likewise, visual foresight [11] leverages a deep video
prediction model to plan the end-effector motion by sampling
actions leading to a state which approximates the goal image.
However, visual model-predictive control relies on learning
a good forward model, and sampling suitable actions is
not only computationally expensive but also requires finding
a good action distribution. End-to-end methods solve the
issues mentioned above by directly predicting the next action.
Guided policy search [12] was one of the first to employ

an end-to-end trained neural network to learn visuomotor
skills, yet their approach requires months of training and
multiple robots. Well-known imitation learning approaches
such as GAIL [13] and SQIL [14] could also serve as
backbones upon which we build our probabilistic approach.
However, we chose end-to-end visuomotor control [1] as our
backbone network architecture, for its simplicity and ability
to achieve a zero-shot sim-to-real adaption through domain
randomisation.

Uncertainty Estimation. Approaches that can capture
predictive uncertainties such as Bayesian Neural Net-
works [15] and Gaussian Processes [16] usually lack scal-
ability to big data due to the computational cost of in-
ferring the exact posterior distribution. Deep neural net-
works with dropout [17] address this problem by leveraging
variational inference [18] and imposing a Bernoulli distri-
bution over the network parameters. The dropout training
can be cast as approximate Bayesian inference over the
network’s weights [19]. Gal et al. [20] show that for the
deep convolutional networks with dropout applied to the
convolutional kernels, the uncertainty can also be computed
by performing Monte Carlo sampling at the test phase.
Rather than doing a grid search over the dropout rate which is
computationally expensive, concrete dropout [21] relaxes the
discrete Bernoulli distribution to the concrete distribution and
thus allows the dropout rate to be trained jointly with other
model parameters using the reparameterisation trick [22].

Failure Case Recovery. Most of the existing research
utilise the fast inference of deep models to achieve closed-
loop control [23], [24], [25]. However, failure case detection
and recovery in continuous operation has not been considered
in other works. Moreover, predicted actions are usually
modelled as deterministic [26], [27], while the uncertainty
of the policy networks has not been thoroughly investigated.
Another line of research considering failure recovery is inter-
active imitation learning, which assumes access to an oracle
policy. Similar to our work, HG-DAgger [28] estimates the
epistemic uncertainty in an imitation learning setting, but by
formulating their policy as an ensemble of neural networks,
and they use the uncertainty to determine at which degree
a human should intervene. In this paper, our intuition is to
detect the failure cases by monitoring the uncertainty of the
policy neural network and rescue the robot when it is likely
to fail by exploring into the robot state-action space under
high confidence (i.e. low uncertainties).

III. MODELLING UNCERTAINTY IN DEEP
VISUOMOTOR CONTROL

To detect the potential failure cases in manipulation, we
build a probabilistic policy network for VMC. Uncertainty
is viewed as an indicator of the likelihood of task failure.

End-to-End Visuomotor Control. For clarity, we first
briefly review the end-to-end visuomotor control model [1].
At timestep t, it takes K consecutive frames of raw RGB
images (It−K+1, ..., It) as input to a deep convolutional neural
network and outputs the embedding (et−K+1, ...,et). To incor-
porate the configuration space information, the embedding

𝒙𝒕

𝐼𝑡

𝜓𝑂𝐵𝑆

𝒔𝒕
LSTM FC

D
ro

p
o

u
t

ෝ𝒖𝛥𝐸𝐸

ෝ𝒖𝐺𝑅𝑃

ෝ𝒒𝐸𝐸

ෝ𝒒𝑂𝐵𝐽

FC

D
ro

p
o

u
t

𝒆𝒕

ෝ𝒖𝛥𝐸𝐸

ෝ𝒖𝐺𝑅𝑃

MLP

Bayesian VMC

Uncertainty Foresight

Monte Carlo

sampling

ഥෝ𝒂𝑡

execute next action

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑡+1

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑡
(Eq. 3)

Fig. 2. Network architecture of Introspective Visuomotor Control model.
Blue: the backbone Bayesian Visuomotor Control model. The current
observation It is passed through a CNN ψOBS. This spatial feature map
is concatenated to the tiled proprioceptive feature xt . The concatenated
state representation st is fed into an LSTM. The LSTM embedding et is
passed through a number of concrete dropout layers and fully connected
layers interleavingly, whose output is then decoded into action commands
û∆EE and ûGRP as well as auxiliary position predictions q̂EE and q̂OBJ .
During test time, the mean action ât is executed as the next action. The
uncertainty estimate of the next timestep is used to supervise the prediction
of the uncertainty foresight model. Orange: uncertainty foresight model. The
LSTM embedding et is concatenated with the action commands û∆EE and
ûGRP. It is passed through an MLP with 2 fully connected layers to predict
the uncertainty associated with the next embedding et+1.

is first concatenated with the corresponding robot joint
angles (xt−K+1, ...,xt) and then fed into a recurrent network
followed by a fully connected layer. The buffered history
information of length K is leveraged to capture the higher-
order states, e.g. the velocity and acceleration. In an object
manipulation task using a robot gripper, the model predicts
the next joint velocity command ûJ and the next discrete
gripper action ûGRP (open, close or no-op) as well as the
object position q̂OBJ and gripper position q̂EE as auxiliary
targets with the following loss objective:

Ltotal =MSE(ûJ ,uJ)+CCE(ûGRP,uGRP)

+MSE(q̂OBJ ,qOBJ)+MSE(q̂EE ,qEE),
(1)

where MSE and CCE stand for Mean-Squared Error
and Categorical Cross-Entropy respectively. The losses are
equally weighted and the model is trained end-to-end with
stochastic gradient descent.

In this work, we use delta end-effector position command
û∆EE rather than joint velocity command ûJ as a model
output. We have found this to be more stable and less prone
to the accumulated error over a long time horizon. We feed
a buffer of K = 4 input frames at every timestep, and as we
rollout the model, we keep the LSTM memory updated along
the whole trajectory, as opposed to just K buffered frames.

Uncertainty Estimation. In the Bayesian setting, the ex-
act posterior distribution of the network weights is intractable
in general, due to the marginal likelihood. In the variational
inference case, we consider an approximating variational
distribution, which is easy to evaluate. To approximate the
posterior distribution, we minimise the Kullback-Leibler
divergence between the variational distribution and the pos-
terior distribution. Gal et al. [19] propose using dropout as a
simple stochastic regularisation technique to approximate the
variational distribution. Training a deep visuomotor control
policy with dropout not only reduces overfitting, but also

enforces the weights to be learned as a distribution and thus
can be exploited to model the epistemic uncertainty.

In practice, we train a Bayesian dropout visuomotor
control policy and evaluate the posterior action command
distribution by integrating Monte Carlo samples. At test time,
we rollout the policy by performing stochastic forward passes
at each timestep. Figure 2 depicts the network architecture
of our model. To learn the dropout rate adaptively, we add
concrete dropout layers. Concrete dropout [21] uses a con-
tinuous relaxation of dropout’s discrete masks and enables us
to train the dropout rate as part of the optimisation objective,
for the benefit of providing a well-calibrated uncertainty
estimate. We also experiment with the number of dropout
layers. We choose one and two layers since we do not want
to add unnecessary trainable parameters and increase the
computation cost. The number of fully connected layers is
adjusted according to that of dropout layers.

At timestep t, we draw action samples At = {â1
t , â2

t , ...},
where âi

t = [ûi
∆EE,t , û

i
GRP,t]

T is a model output, and use their
mean ât = mean(At) as the action command to execute in
the next iteration. For an uncertainty estimate, following
probabilistic PoseNet [29], we have experimented with the
trace of covariance matrix of the samples and the maximum
of the variance along each axis. Similarly, we have found the
trace to be a representative scalar measure of uncertainty.

Simply computing the trace from a batch of sampled action
commands does not capture the uncertainty accurately in
cases where the predicted values vary significantly in norm in
an episode. For instance, when the end-effector approaches
an object to interact with, it needs to slow down. At such
a timestep, since the predicted end-effector commands are
small, the trace of the covariance matrix is also small. To
calibrate the uncertainty measure, we transform every pre-
dicted delta end-effector position command û∆EE into norm
and unit vector, weight them with λ and 1−λ respectively,
and concatenate them as a 4-dimensional vector X̂, before
computing the trace:

û∆EE = [ûx, ûy, ûz]
T 7→ X̂ =

[λ ‖û∆EE‖,(1−λ) ûx
‖û∆EE‖,(1−λ) ûy

‖û∆EE‖,(1−λ) ûz
‖û∆EE‖]

T .
(2)

Here λ is treated as a hyper-parameter. The superscripts i
denoting sample id and the subscripts t denoting timestep
are omitted for readability.

To determine how many Monte Carlo samples are required
to achieve convergence, we compare the predicted action
commands with the ground truth in validation episodes. We
compute the median error in each episode and average over
validation episodes. Monte Carlo sampling converges after
around 50 samples and no more improvement is observed
with more samples. We thus define:

uncertaintyt = Tr
(

cov
(
[X̂1

t , X̂
2
t , ..., X̂

50
t]T

))
, (3)

where X̂i
t ∈ R4×1 is a sampled prediction transformed into

weighted norm and unit vector in Eq. 2.

IV. RECOVERY FROM FAILURES

Our Bayesian visuomotor control model provides us with
an uncertainty estimate of the current state at each timestep.
In this section, we describe how we make use of it to recover
from failures.

Knowing When to Recover. Continuously executing an
uncertain trajectory is likely to lead to failure; diagnosis in an
early stage and recovery can bring execution back on track.
The question is, at which point shall we switch to a recovery
mode to optimise overall success? Having a Bayesian VMC
model trained, we deploy it on validation episodes to pick
an optimal threshold of uncertainty for recovery. Section V
details how to pick this threshold. During test time, as we
rollout the model, when the uncertainty estimate is over the
threshold, we switch to a recovery mode.

Following Minimum Uncertainty. Once the robot is
switched to a recovery mode, our intuition is to explore
in the state-action space and modify the robot configuration
to an area trained with sufficient training examples. Hence,
we propose moving along the trajectory with minimisation
of uncertainty. However, the uncertainty estimate from the
Bayesian VMC model in Figure 2 is associated with the
current state. The Bayesian VMC model cannot provide
the uncertainty of future frames without physically trying
it. To address this issue, drawing inspiration from Embed
to Control [8] which extracts a latent dynamics model for
control from raw images, we came up with the idea of
learning a transition model mapping from the current latent
feature embedding et given by our Bayesian VMC model to
future et+1 conditioned on an action at . Then the predicted
feature embedding et+1 could be fed as input to the first
dropout layer through the last fully connected layer to sample
actions and estimate the uncertainty. However, this approach
of predicting next embedding et+1 conditioned on action
at would require further Monte Carlo sampling to estimate
the uncertainty, making it computationally costly during test
time.

Instead of predicting in the latent space, inspired by
Visual Foresight [11], we predict the uncertainty of the
next embedding et+1 after executing at directly. This can
be achieved by Knowledge Distillation [30]. Specifically, we
use the model uncertainty of time t+1 as the learning target
to train the uncertainty foresight model. We refer the reader
to Figure 2.

During test time, when the minimum uncertainty recovery
mode is activated, we first backtrack the position of the
end-effector to a point of minimum uncertainty within 20
steps. This is implemented by storing action, LSTM memory,
uncertainty estimate and timestep in a FIFO queue of a
maximum size of 20. Although the original state cannot
always be recovered exactly in the case when the object
is moved or when considering sensing and motor noise
on a real system, backtracking guides the robot back into
the vicinity of states where previous policy execution was
confident. Then, at each timestep, we sample actions from
the Bayesian VMC model and choose the action leading to

Algorithm 1 Failure recovery for Bayesian VMC (test time)
Require: f : trained Bayesian VMC model, g: trained

Bayesian VMC model and uncertainty foresight mod-
ule, outputting the action with the minimum epistemic
uncertainty among samples from f , Trecovery: minimum
recovery interval, S: number of samples used to compute
uncertainty, C: recovery threshold.

1: # Rollout a trained model.
2: while true do
3: Sample S actions from f and compute their mean and

uncertainty estimate.
4: Update the sum of a sliding window of uncertainties.
5: # Check if failure recovery is needed.
6: if time since last recovery attempt > Trecovery and

uncertainty sum >C then
7: # Uncertainty is high: start recovery.
8: Double Trecovery.
9: Update last recovery attempt timestep.

10: Backtrack to a position with min uncertainty within
the last few steps; restore memory.

11: Rollout g for a number of steps.
12: else
13: # Uncertainty is low: perform a normal action.
14: Execute the mean action command of Monte Carlo

sampling from f .
15: end if
16: if maximum episode steps reached or task success

then
17: break
18: end if
19: end while
20:
21: return binary task success

the next state with minimum uncertainty according to our
uncertainty foresight model. Algorithm 1 explains how this
works within the Bayesian VMC prediction loop. With the
same minimum recovery interval, we have observed that it is
common to get stuck in a recovery loop, where after recovery
the robot becomes too uncertain at the same place and goes
into recovery mode again. Inspired by the binary exponential
backoff algorithm – an algorithm used to space out repeated
retransmissions of the same block of data to avoid network
congestion – we double the minimum recovery interval every
time that the recovery mode is activated. This simple intuitive
trick solves the problem mentioned above well empirically.

V. EXPERIMENTS

Our experiments are designed to answer the following
questions: (1) Is uncertainty computed from stochastic sam-
pling from our Bayesian VMC models a good indication
of how well the model performs in an episode? (2) How
well can our model recover from failures? (3) How well
does our proposed minimum uncertainty recovery strategy
perform compared to other recovery modes?

Experimental Setup and Data Collection. We follow
Gorth et al. [31] and use the MuJoCo physics engine [32]
along with an adapted Gym environment [33] provided
by [4] featuring the Fetch Mobile Manipulator [34] with a
7-DoF arm and a 2-finger gripper. Three tasks (Figure 3)
are designed as they are fundamental in manipulation and
commonly used as building blocks for more complex tasks.
In the pushing and pick-and-place tasks, the cube and the
target are randomly spawned in a 6x8 grid, as opposed to
only 16 initial cube positions and 2 initial target positions in
the VMC [1] pick-and-place task. In the pick-and-reach task,
the stick and the target are spawned in 2 non-overlapping 6x8
grids. Similarly, we generate expert trajectories by placing
pre-defined waypoints and solving the inverse kinematics.
For each task, 4,000 expert demonstrations in simulation are
collected, each lasting 4 seconds long. These are recorded
as a list of observation-action tuples at 25 Hz, resulting in
an episode length of H = 100. For the uncertainty foresight
model, we collect 2,000 trajectories from deploying a trained
Bayesian VMC. At every timestep, we execute an action
sampled from the Bayesian VMC. We record the current
embedding, the action executed and the uncertainty of the
next state after the action is executed, as described in
Section III. An episode terminates after the task is completed
or after the maximum episode limit of 200 is reached.

Fig. 3. Top: Example of a pushing expert demonstration. The robot first
pushes the red cube forward to align it with the blue target, and then moves
to the side to push it sideways onto the target. Middle: Example of pick-
and-place expert demonstration. The robot first moves toward the red cube
to pick it up, and then moves to the blue target to drop the cube. Bottom:
Example of a pick-and-reach expert demonstration. The robot first moves
towards the red stick to pick it up at one end, and then reaches the blue
target with the other end.

Picking Uncertainty Threshold. Uncertainty estimates
can sometimes be noisy, so we smooth them out using
a sliding window, given the assumption that uncertainties
contiguously change throughout the course of a trajectory.
We have found a sliding window of 20 frames best avoids
noisy peaks. It is worth mentioning that the simulator runs
at 25 Hz and 20 frames correspond to only 0.8 seconds. For
each evaluation episode, we record a binary label (i.e. task
fail/success) and the maximum sum of a sliding window of
uncertainties along the episode. In the following, we denote

the maximum sum of a sliding window of uncertainties
as u or maximum uncertainty. We sort the episodes by
their maximum uncertainty in increasing order. Under the
assumption that the probability of success after recovery is
the overall average task success rate which is already known,
we pick a threshold to maximise the overall task success rate
after recovery, which is equivalent to maximising the increase
of successes. We find the sorted episode index as follows.

i∗ = argmax
i

(|{x | u(x)> ui}| · r

−|{x | u(x)> ui, result(x) = success)}|),
(4)

where x is an episode, u(x) is the maximum uncertainty of
episode x, ui is the maximum uncertainty of episode indexed
i, and r is the overall average success rate.

During test time, as we rollout the model, when the sum
of a sliding window of 20 previous uncertainties is greater
than the threshold of maximum uncertainty ui∗ , we switch
to the recovery mode.

Baselines for Visuomotor Control Recovery. Our aim
is to show our proposed failure recovery mode outperforms
other failure recovery modes, as well the backbone VMC [1].
Thus, we do not directly compare it against other visuomotor
control approaches. We compare our failure recovery mode
MIN UNC in Section IV against two baselines: RAND and
INIT. The recoveries all happen when the uncertainty is high
while deploying a Bayesian VMC (line 7 of Algorithm 1).
We use a maximum of 25 recovery steps in all cases. (1)
RAND: The end-effector randomly moves 25 steps and we
keep the gripper open amount as it is (no-op). Then, we
reset the LSTM memory. (2) INIT: We open the gripper,
sample a point in a sphere above the table and move the
end-effector to that point. Then, we reset the LSTM memory.
This recovery mode is designed to reset to a random initial
position. All the recovery modes attempt to move the robot
from an uncertain state to a different one, with the hope of
it being able to interpolate from the training dataset starting
from a new state.

VI. RESULTS

Task Success vs Uncertainty Estimate. Is uncertainty
estimate a good indication of how well the model performs
in an episode? To address this first guiding question in
Section V, we analyse how the task success rate varies
with respect to the uncertainty estimate from our Bayesian
VMC models. We evaluate on 800 test scene setups and
regroup them by maximum uncertainty into 10 bins. Figure 4
shows the task success rate versus maximum uncertainty
in each bin. We observe that task success rate is inversely
correlated with maximum uncertainty, which corroborates
our hypothesis of high uncertainty being more likely to lead
to failure.

Manipulation with Failure Recovery Results. Regarding
the last two guiding questions in Section V, we evaluate the
performance of the controllers on 100 held-out test scene
setups for all three tasks. We report all model performances
in Table I.

Ta
sk

 S
u

cc
e
ss

 R
a
te

Percentile

M
a
x
 U

n
ce

rt
a
in

ty

Ta
sk

 S
u

cc
e
ss

 R
a
te

Percentile

M
a
x
 U

n
ce

rt
a
in

ty

Ta
sk

 S
u

cc
e
ss

 R
a
te

Percentile

M
a
x
 U

n
ce

rt
a
in

ty

Ta
sk

 S
u

cc
e
ss

 R
a
te

Percentile

M
a
x
 U

n
ce

rt
a
in

ty

Fig. 4. Evaluation of task success rate vs maximum uncertainty of different
models evaluated over 800 test episodes. Left: one dropout layer. Right: two
dropout layers. Top: pushing. Bottom: pick-and-place. These plots are drawn
by sorting episodes by their maximum uncertainty and regrouping them
into 10 bins. Subsequently, the average task success rate and the average
maximum uncertainty are computed for each bin.

In the first row, we compare against VMC, the orig-
inal deterministic VMC model [1], but with one or two
fully connected layers after the LSTM. Next, BVMC, the
Bayesian VMC model executing the mean of the sampled
predictions at each timestep, but not using the uncertainty
estimate information for recovery. Although this does not
perform any recovery, the network architecture is slightly
different than VMC due to the added concrete dropout
layer(s). BVMC + RAND and BVMC + INIT are the baseline
recovery modes (Section V). Last, we present BVMC +
MIN UNC, our proposed recovery mode following minimum
uncertainty (Section IV).

In the pushing task, although the reaching performance of
BVMC drops compared to VMC, the pushing performance
is slightly better. In general, adding stochasticity and weight
regularisation prevents overfitting, but it does not always
boost performance. BVMC + RAND and BVMC + INIT
outperform BVMC by approximately 5% in both cases
of one and two fully connected layers. The performance
increase is moderate because a large proportion of bins
of episodes in the mid maximum uncertain range has a
task success rate close to the average overall task success
rate (Figure 4) and the threshold of maximum uncertainty
picked is relatively high, thus not allowing many episodes to
switch to a recovery mode. In general, the models with two
fully connected layers have higher performance than their
counterparts with one fully connected layer. This can be
understood as having more trainable parameters helps learn a
better function approximation. Our proposed BVMC + MIN
UNC surpasses other two baseline recovery modes, indicating
that following actions with minimum uncertainty contributes
further to the task success.

In pick-and-place and pick-and-reach, all VMC and
Bayesian VMC models exhibit near perfect reaching per-
formance. Also, surprisingly, all models do better than their
counterparts in the pushing task. At first glance, both tasks

MODEL #FC=1
PUSHING PICK-AND-PLACE PICK-AND-REACH

REACH PUSH REACH PICK PLACE REACH PICK TASK
[%] [%] [%] [%] [%] [%] [%] [%]

VMC [1] 97.00 ± 1.62 49.00 ± 4.74 99.00 ± 0.94 77.00 ± 3.99 52.00 ± 4.74 99.00 ± 0.94 77.00 ± 3.99 69.00 ± 4.39
BVMC 91.00 ± 2.71 50.00 ± 4.75 99.00 ± 0.94 84.00 ± 3.48 60.00 ± 4.65 99.00 ± 0.94 88.00 ± 3.08 78.00 ± 3.93
+ RAND 93.00 ± 2.42 56.00 ± 4.71 99.00 ± 0.94 85.00 ± 3.39 68.00 ± 4.43 99.00 ± 0.94 89.00 ± 2.97 81.00 ± 3.72
+ INIT 93.00 ± 2.42 55.00 ± 4.72 99.00 ± 0.94 88.00 ± 3.08 67.00 ± 4.46 99.00 ± 0.94 93.00 ± 2.42 79.00 ± 3.86
+ MIN UNC 94.00 ± 2.25 58.00 ± 4.68 99.00 ± 0.94 90.00 ± 2.85 70.00 ± 4.35 99.00 ± 0.94 93.00 ± 2.42 82.00 ± 3.64

MODEL #FC=2
PUSHING PICK-AND-PLACE PICK-AND-REACH

REACH PUSH REACH PICK PLACE REACH PICK TASK
[%] [%] [%] [%] [%] [%] [%] [%]

VMC [1] 96.00 ± 1.86 50.00 ± 4.75 97.00 ± 1.62 79.00 ± 3.86 60.00 ± 4.65 99.00 ± 0.94 79.00 ± 3.86 70.00 ± 3.64
BVMC 88.00 ± 3.08 53.00 ± 4.74 100.00 ± 0.00 87.00 ± 3.19 69.00 ± 4.39 99.00 ± 0.94 89.00 ± 2.97 79.00 ± 3.86
+ RAND 88.00 ± 3.08 60.00 ± 4.65 100.00 ± 0.00 91.00 ± 2.71 74.00 ± 4.16 99.00 ± 0.94 91.00 ± 2.71 82.00 ± 3.64
+ INIT 93.00 ± 2.42 58.00 ± 4.68 100.00 ± 0.00 89.00 ± 2.97 76.00 ± 4.05 99.00 ± 0.94 93.00 ± 2.42 83.00 ± 3.56
+ MIN UNC 91.00 ± 2.71 62.00 ± 4.61 100.00 ± 0.00 89.00 ± 2.97 82.00 ± 3.64 99.00 ± 0.94 94.00 ± 2.25 85.00 ± 3.39

TABLE I
COMPARISON OF MODEL PERFORMANCES WITH AND WITHOUT FAILURE RECOVERY IN THE PUSHING, PICK-AND-PLACE AND PICK-AND-REACH

TASKS. TOP: ONE FULLY CONNECTED LAYER. BOTTOM: TWO FULLY CONNECTED LAYERS. BEST TASK PERFORMANCES ARE BOLD-FACED.

seem to be more difficult than pushing. In fact, the design of
our pushing task requires a two-stage rectangular push. We
observe most failure cases in pushing happen when the end-
effector does not push at the centre of the cube, so that the
cube is pushed to an orientation never seen in the training
dataset. This rarely happens in the pick-and-place and pick-
and-reach tasks. Similarly, BVMC + RAND and BVMC +
INIT show a performance increase compared to BVMC +
NO. Last but not least, BVMC + MIN UNC almost surpasses
all other models in reaching, picking and placing/task, with
a task success rate increase of 22% compared to VMC for
pick-and-place and 15% for pick-and-reach.

Qualitatively, we observe interesting behaviours from our
uncertainty estimates and recovery modes. In all three tasks,
when a Bayesian VMC controller approaches the cube with
a deviation to the side, we often see the controller fall
into the recovery mode, while a VMC controller with the
same scene setup continues the task and eventually get stuck
in a position without further movements. Occasionally, in
the pick-and-place and pick-and-reach tasks when the end-
effector moves up without grasping the cube successfully,
the Bayesian VMC controller monitors high uncertainty and
starts recovery.

Fig. 5. Recovery comparison. The top row depicts operation without
recovery, while the bottom row shows the results with recovery based on
the minimum uncertainty. The robot fails to accomplish the pushing task
without the recovery. The images are cropped to emphasise the difference.

System Efficiency. Recovery from uncertain states im-
proves task performance. However, drawing stochastic sam-
ples also comes at an additional time cost. By design of our
network architecture, only the last dropout layers and fully

connected layers need to be sampled, since the first 8 layers
of convolutional neural network and LSTM are deterministic.
For reference, on an NVIDIA GeForce GTX 1080, averaging
50 Monte Carlo samples and computing the uncertainty take
around 0.1 seconds, while the original VMC takes around
0.03 seconds per timestep. If treating the inference as a mini-
batch of operations, this extra computation can be further
reduced [35].

VII. CONCLUSIONS
This paper investigates the usage of policy uncertainty

for failure case detection and recovery. In our method, a
Bayesian neural network with concrete dropout is employed
to obtain the model epistemic uncertainty by Monte Carlo
sampling. We further make use of a deterministic model
and knowledge distillation to learn the policy uncertainty
of a future state conditioned on an end-effector action.
Consequently, we are able to predict the uncertainty of a
future timestep without physically simulating the actions.
The experimental results verified our hypothesis – the un-
certainties of the VMC policy network can be used to
provide intuitive feedback to assess the failure/success in
manipulation tasks, and, reverting and driving the robot to a
configuration with minimum policy uncertainty can recover
the robot from potential failure cases.

ACKNOWLEDGMENT
Chia-Man Hung is funded by the Clarendon Fund and

receives a Keble College Sloane Robinson Scholarship at
the University of Oxford. Yizhe Wu is funded by the China
Scholarship Council. This research is also supported by an
EPSRC Programme Grant [EP/M019918/1] and a gift from
Amazon Web Services (AWS). The authors acknowledge
the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work
(http://dx.doi.org/10.5281/zenodo.22558).
We also thank Ruoqi He, Hala Lamdouar, Walter Goodwin
and Oliver Groth for proofreading and useful discussions,
and the reviewers for valuable feedback.

REFERENCES

[1] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in Conference on Robot Learning, 2017, pp. 334–343.

[2] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and
V. Vanhoucke, “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), May 2018, pp. 4243–
4250.

[3] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-
to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[4] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” in Advances in neural information processing systems, 2017, pp.
1087–1098.

[5] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot
visual imitation learning via meta-learning,” in Conference on Robot
Learning, 2017, pp. 357–368.

[6] D. Kragić, L. Petersson, and H. I. Christensen, “Visually guided
manipulation tasks,” Robotics and Autonomous Systems, vol. 40, no.
2-3, pp. 193–203, 2002.

[7] L. Sun, G. Aragon-Camarasa, S. Rogers, R. Stolkin, and J. P. Siebert,
“Single-shot clothing category recognition in free-configurations with
application to autonomous clothes sorting,” in 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2017, pp. 6699–6706.

[8] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in Advances in neural information processing systems,
2015, pp. 2746–2754.

[9] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in
Advances in neural information processing systems, 2016, pp. 5074–
5082.

[10] T. Yu, G. Shevchuk, D. Sadigh, and C. Finn, “Unsupervised visuomo-
tor control through distributional planning networks,” arXiv preprint
arXiv:1902.05542, 2019.

[11] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 2786–2793.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[13] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565–
4573.

[14] S. Reddy, A. D. Dragan, and S. Levine, “Sqil: Imitation learn-
ing via reinforcement learning with sparse rewards,” arXiv preprint
arXiv:1905.11108, 2019.

[15] D. J. MacKay, “A practical bayesian framework for backpropagation
networks,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[16] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning. Springer, 2003, pp. 63–71.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[18] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An
introduction to variational methods for graphical models,” Machine
learning, vol. 37, no. 2, pp. 183–233, 1999.

[19] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050–1059.

[20] ——, “Bayesian convolutional neural networks with bernoulli approx-
imate variational inference,” arXiv preprint arXiv:1506.02158, 2015.

[21] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Advances in
neural information processing systems, 2017, pp. 3581–3590.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[23] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvu-
nakool, J. Kramár, R. Hadsell, N. de Freitas, et al., “Reinforcement
and imitation learning for diverse visuomotor skills,” arXiv preprint
arXiv:1802.09564, 2018.

[24] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric actor critic for image-based robot learning,” arXiv
preprint arXiv:1710.06542, 2017.

[25] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforce-
ment learning for deformable object manipulation,” arXiv preprint
arXiv:1806.07851, 2018.

[26] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” arXiv preprint arXiv:1804.00645, 2018.

[27] Y. Lee, E. S. Hu, Z. Yang, and J. J. Lim, “To follow or not to
follow: Selective imitation learning from observations,” arXiv preprint
arXiv:1912.07670, 2019.

[28] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer,
“Hg-dagger: Interactive imitation learning with human experts,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 8077–8083.

[29] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning
for camera relocalization,” in 2016 IEEE international conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 4762–4769.

[30] S. R. Bulò, L. Porzi, and P. Kontschieder, “Dropout distillation,” in
International Conference on Machine Learning, 2016, pp. 99–107.

[31] O. Groth, C.-M. Hung, A. Vedaldi, and I. Posner, “Goal-conditioned
end-to-end visuomotor control for versatile skill primitives,” arXiv
preprint arXiv:2003.08854, 2020.

[32] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[33] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[34] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich,
“Fetch & freight: Standard platforms for service robot
applications,” 2018. [Online]. Available: https://fetchrobotics.com/wp-
content/uploads/2018/04/Fetch-and-Freight-Workshop-Paper.pdf

[35] Y. Gal, “Uncertainty in deep learning,” University of Cambridge,
vol. 1, p. 3, 2016.

5
Goal-Conditioned End-to-End Visuomotor

Control for Versatile Skill Primitives

In this chapter, we propose a novel network architecture for goal-conditioned end-to-

end visuomotor control. Unlike prior work, it can be efficiently conditioned on a new

task with just a single target image without fine-tuning, as is common in imitation

learning and meta learning. In other words, it learns general skill primitives to solve

new tasks with unseen scene setups. We demonstrates the model’s efficacy by its

strong performance benchmarking on simulated pushing and pick-and-place tasks.

Furthermore, we show its robustness and versatility in that it transfers directly

to new scenarios without the need of domain randomisation during training or

fine-tuning during execution in visually challenging circumstances. This work is

published as:

Oliver Groth, Chia-Man Hung, Andrea Vedaldi, Ingmar Posner. “Goal-Conditioned

End-to-End Visuomotor Control for Versatile Skill Primitives”. In: IEEE Inter-

national Conference on Robotics and Automation (ICRA). June 2021. (© 2021

IEEE. Reprinted, with permission, from [28].)

43

Goal-Conditioned End-to-End Visuomotor Control
for Versatile Skill Primitives

Oliver Groth1, Chia-Man Hung1, Andrea Vedaldi1, Ingmar Posner1

Abstract— Visuomotor control (VMC) is an effective means
of achieving basic manipulation tasks such as pushing or pick-
and-place from raw images. Conditioning VMC on desired
goal states is a promising way of achieving versatile skill
primitives. However, common conditioning schemes either rely
on task-specific fine tuning - e.g. using one-shot imitation
learning (IL) - or on sampling approaches using a forward
model of scene dynamics i.e. model-predictive control (MPC),
leaving deployability and planning horizon severely limited. In
this paper we propose a conditioning scheme which avoids
these pitfalls by learning the controller and its conditioning
in an end-to-end manner. Our model predicts complex action
sequences based directly on a dynamic image representation of
the robot motion and the distance to a given target observa-
tion. In contrast to related works, this enables our approach
to efficiently perform complex manipulation tasks from raw
image observations without predefined control primitives or
test time demonstrations. We report significant improvements
in task success over representative MPC and IL baselines.
We also demonstrate our model’s generalisation capabilities
in challenging, unseen tasks featuring visual noise, cluttered
scenes and unseen object geometries.

I. INTRODUCTION

With recent advances in deep learning, we can now learn
robotic controllers end-to-end, mapping directly from raw
video streams into a robot’s command space. The promise of
these approaches is to build real-time visuomotor controllers
without the need for complex pipelines or predefined macro-
actions (e.g. for grasping). End-to-end visuomotor controllers
have demonstrated remarkable performance in real systems,
e.g. learning to pick up a cube and place it in a basket [1],
[2]. However, a common drawback of current visuomotor
controllers is their limited versatility due to an often very
narrow task definition. For example, in the controllers of [1],
[2], which are unconditioned, putting a red cube into a blue
basket is a different task than putting a yellow cube into a
green basket. In contrast to that, in this paper we consider a
broader definition of task and argue that it should rather be
treated as a skill primitive (e.g. a policy which can pick up
any object and place it anywhere else). Such a policy must
thus be conditioned on certain arguments, e.g. specifying the
object to be moved and its target.

Several schemes have been proposed to condition visuo-
motor controllers on a target image, e.g. an image depicting
how a scene should look like after the robot has executed
its task. Established conditioning schemes build on vari-

*This work is supported by ERC 677195-IDIU and EPSRC
EP/M019918/1.

1Department of Engineering Science, University of Oxford, United
Kingdom. Corresponding author: ogroth@robots.ox.ac.uk

ous approaches such as model-predictive control [3], task-
embedding [4] or meta-learning [5] and are discussed in
greater detail in section II. However, the different meth-
ods rely on costly sampling techniques, access to prior
demonstrations or task-specific fine-tuning during test time
restraining their general applicability.

In contrast to prior work, we propose an efficient end-to-
end controller which can be conditioned on a single target
image without fine-tuning and regresses directly to motor
commands of an actuator without any predefined macro-
actions. This allows us to learn general skill primitives,
e.g. pushing and pick-and-place skills, which are versatile
enough to immediately generalise to new tasks, i.e. unseen
scene setups and objects to handle. Our model utilises
dynamic images [6] as a succinct representation of the
video dynamics in its observation buffer as well as a visual
estimation of the difference between its current observation
and the target it is supposed to accomplish. Figure 1 depicts
an example execution of our visuomotor controller, its condi-
tioning scheme and intermediate observation representations.

In summary, our contributions are three-fold: Firstly, we
propose a novel architecture for visuomotor control which
can be efficiently conditioned on a new task with just one
single target image. Secondly, we demonstrate our model’s
efficacy by outperforming representative MPC and IL base-
lines in pushing and pick-and-place tasks by significant
margins. Lastly, we analyse the impact of the dynamic image
representation in visuomotor control providing beneficial
perception invariances to facilitate controller resilience and
generalisation without the need of sophisticated domain
randomisation schemes during training.

II. RELATED WORK

The problem of goal conditioning constitutes a key chal-
lenge in visuomotor control: Given a specific task specifica-
tion (e.g. putting a red cube onto a blue pad), it needs to
be communicated to the robot, which in turn must adapt its
control policy in such a way that it can carry out the task.
In this paper, we focus on goals which are communicated
visually, i.e. through images depicting how objects should
be placed on a table. Prior methods which have shown
impressive real-world results typically involve dedicated sub-
modules for perception and planning [7] or are only loosely
goal-conditioned, e.g. on a target shape category [8]. We
restrict our survey to end-to-end controllers which can be
conditioned on a single target image and group related work
by their condition schemes and action optimisation methods.

𝑎𝑐𝑡𝑖𝑜𝑛

𝑝𝑜𝑠𝑒

!𝜌(𝐼!"#$% , … , 𝐼!)

!𝜌(𝐼! , 𝐼&)

𝐼!

!𝜌(𝐼!$'"#$% , … , 𝐼!$')

!𝜌(𝐼!$' , 𝐼&)

𝐼!$'

𝑡 𝑡 + Δ

𝐼&

time

goal
conditioning

controller execution

0

GEECO

…

Fig. 1: Our proposed model executes a task given by a target image IT . In this example, IT indicates that the small yellow
cube from the front right needs to be moved onto the green pad in the back left. Dynamic images are used to (1) represent the
difference between the current observation and the target ρ̂(It, IT) and (2) to capture the motion dynamics ρ̂(It−K+1, . . . , It).
Current and target location of the manipulated object are highlighted by red and green circles respectively.

In visual model-predictive control one learns a forward
model of the world, forecasting the outcome of an action.
The learned dynamics model is then explored via sampling
or gradient-based methods to compute a sequence of actions
which brings the predicted observation closest to a desired
goal observation. An established line of work on Deep
Visual Foresight (VFS) [9], [3], [10], [11] learns action-
conditioned video predictors and employs CEM-like [12]
sampling methods for trajectory optimisation, successfully
applying those models to simulated and real robotic pushing
tasks. Instead of low-level video prediction, visual MPC
can also be instantiated using higher-level, object-centric
models for tasks such as block stacking [13], [14]. Another
line of work attempts to learn forward dynamics models in
suitable latent spaces. After projecting an observation and a
goal image into the latent space, a feasible action sequence
can then be computed using gradient-based optimisation
methods [15], [16], [17], [18]. Even though MPC approaches
have shown promising results in robot manipulation tasks,
they are limited by the quality of the forward model and
do not scale well due to the action sampling or gradient
optimisation procedures required. In contrast to them our
model regresses directly to the next command given a buffer
of previous observations.

One-Shot Imitation Learning seeks to learn general task
representations which are quickly adaptable to unseen setups.
MIL [5] is a meta-controller, which requires fine-tuning
during test time on one example demonstration of the new
task to adapt to it. In contrast to MIL, TecNet [4] learns
a task embedding from expert demonstrations and requires
at least one demonstration of the new task during test time
to modulate its policy according to similar task embeddings
seen during training. Additionally, a parallel line of work in
that domain operates on discrete action spaces [19], [20] and
maps demonstrations of new tasks to known macro actions.
Unlike those methods, our model is conditioned on a single

target image and does not require any fine-tuning on a new
task during test time.

Goal-conditioned reinforcement learning [21] is another
established paradigm for learning of control policies. How-
ever, due to the unwieldy nature of images as state ob-
servations, the use of goal images typically comes with
limiting assumptions such as being from a previously ob-
served set [22] or living on the manifold of a learned latent
space [23]. Our proposed utilisation of dynamic images for
goal conditioning circumvents such limitations and can be
seen as complementary to other work which incorporates
demonstrations into goal-conditioned policy learning [24],
[25] by enabling efficient bootstrapping of a control policy
on goal-conditioned demonstrations.

III. GOAL-CONDITIONED VISUOMOTOR CONTROL

In order to build a visuomotor controller which can be effi-
ciently conditioned on a target image and is versatile enough
to generalise its learned policy to new tasks immediately,
we need to address the following problems: Firstly, we need
an efficient way to detect scene changes, i.e. answering the
question ‘Which object has been moved and where from and
to?’ Secondly, we want to filter the raw visual observation
stream such that we only retain information pertinent to the
control task; specifically the motion dynamics of the robot.
Drawing inspiration from previous work in VMC and action
recognition, we propose GEECO, a novel architecture for
goal-conditioned end-to-end control which combines the idea
of dynamic images [6] with a robust end-to-end controller
network [1] to learn versatile manipulation skill primitives
which can be conditioned on new tasks on the fly. We discuss
next the individual components.

Dynamic Images. In the domain of action recognition,
dynamic images have been developed as a succinct video
representation capturing the dynamics of an entire frame
sequence in a single image. This enables the treatment of
a video with convolutional neural networks as if it was an

𝜌"(𝐼%&'(),… , 𝐼%)

𝐼-𝐼%(𝐼%&'(),… , 𝐼%)

𝜌"(𝐼%, 𝐼-)

Fig. 2: Utilisation of dynamic images. Left: A dynamic
image represents the motion occurring in a sequence of
K consecutive RGB observations. Right: A dynamic image
represents the changes which occurred between the two
images It and IT like the change of object positions as
indicated by the red and green circles.

ordinary RGB image facilitating dynamics-related feature
extraction. The core of the dynamic image representation is
a ranking machine which learns to sort the frames of a video
temporally [26]. As shown by prior work [6], an approximate
linear ranking operator ρ̂(·) can be applied to any sequence
of H temporally ordered frames (I1, . . . , IH) and any image
feature extraction function ψ(·) to obtain a dynamic feature
map according to the following eq. (1):

ρ̂(I1, . . . , IH ;ψ) =
H∑
t=1

αtψ(It) (1)

αt = 2(H − t+ 1)− (H + 1)(HH −Ht−1) (2)

Here, Ht =
∑t

i=1 1/t is the t-th Harmonic number and
H0 = 0. Setting ψ(·) to the identity, ρ̂(I1, . . . , IH) yields
a dynamic image which, after normalisation across all chan-
nels, can be treated as a normal RGB image by a downstream
network. The employment of dynamic images serves two im-
portant purposes in our network, as depicted in fig. 2. Firstly,
it compresses a window of the last K RGB observations into
one image ρ̂(It−K+1, . . . , It) capturing the current motion of
the robot arm. Secondly, given a target image IT depicting
the final state the scene should be in, the dynamic image
ρ̂(It, IT) lends itself very naturally to represent the visual
difference between the current observation It and the target
state IT . Another advantage of using dynamic images in
these two places is to make the controller network invariant
w.r.t. the static scene background and, approximately, the
object colour, allowing it to focus on location and geometry
of objects involved in the manipulation task.

Observation Buffer. During execution, our network main-
tains a buffer of most recent K observations as a sequence
of pairs ((It−K+1,xt−K+1), . . . , (It,xt)) where It is the
RGB frame at time step t and xt is the proprioceptive
feature of the robot at the same time step represented as

LSTM

𝜓𝐷𝑌𝑁

𝜓𝐷𝐼𝐹𝐹

𝜓𝑂𝐵𝑆

(𝐼+,-./, … ,𝐼+) 𝜌4(𝐼+,-./,… , 𝐼+)

𝜌4(𝐼+ , 𝐼5)

𝐼+

𝜌4(6)

𝜌4(6)

(𝐼+ , 𝐼5)

𝒙𝒕

𝒔𝒕

𝒖;<==

𝒖;>?@

𝒒;==

𝒒;BCD

Fig. 3: Network architecture of GEECO-F . The observation
buffer (It−K+1, . . . , IT) is compressed into a dynamic image
via ρ̂(.) and passed through ψDYN . The current difference
to the target frame IT is also computed via ρ̂(.) and passed
through ψDIFF . Lastly, the current observation It is encoded
via ψOBS . All CNNs compute spatial feature maps which
are concatenated to the tiled proprioceptive feature xt. The
LSTM’s output is decoded into command actions û∆EE and
ûGRP as well as auxiliary pose predictions q̂EE and q̂OBJ .

a vector of its joint angles. Throughout our experiments
we set K = 4. The observation buffer breaks long-horizon
manipulation trajectories into shorter windows which retain
relative independence from each other. This endows the
controller with a certain error-correction capacity, e.g. when
a grasped object slips from the gripper prematurely, the
network can regress back to a pick-up phase.

Goal Conditioning. Before executing a trajectory, our
controller is conditioned on the task to execute, i.e. moving
an object from its initial position to a goal position, via a
target image IT depicting the scene after the task has been
carried out. As shown in fig. 2 (right), the dynamic image
representation ρ̂(It, IT) helps this inference process by only
retaining the two object positions and the difference in the
robot pose while cancelling out all static parts of the scene.

Network Architecture. The controller network takes the
current observation buffer ((It−K+1,xt−K+1), . . . , (It,xt))
and the target image IT as input and regresses to the
following two action outputs: (1) The change in Cartesian
coordinates of the end effector û∆EE and (2) a discrete
signal ûGRP for the gripper to either open (−1), close
(+1) or stay in position (0). Additionally, the controller
regresses two auxiliary outputs: the current position of the
end effector q̂EE and of the object to manipulate q̂OBJ , both
in absolute Cartesian world coordinates. While the action
vectors û∆EE and ûGRP are directly used to control the
robot, the position predictions serve as an auxiliary signal
during the supervised training process to encourage the
network to learn intermediate representations correlated to
the world coordinates. A sketch of our model architecture
can be found in fig. 3.

The full model is trained in an end-to-end fashion on

N expert demonstrations of manipulation tasks collected in
a simulation environment. Each expert demonstration is a
sequence of H time steps indexed by t containing: the RGB
frame It, the proprioceptive feature xt, the robot commands
u∗

∆EE(t), u
∗
GRP (t) and the positions of the end effector and

the object to manipulate q∗
EE(t), q

∗
GRP (t). During training,

we minimise the following loss function:

L =
N∑
i=1

[
H−K+1∑

t=1

MSE(û∆EE(τi,t),u
∗
∆EE(i, t))

+CCE(ûGRP (τi,t),u
∗
GRP (i, t))

+λ
(
MSE(q̂EE(τi,t),q

∗
EE(i, t))

+MSE(q̂OBJ(τi,t),q
∗
OBJ(i, t))

)]
(3)

In eq. (3) MSE and CCE are abbreviations of Mean-
Squared Error and Categorical Cross-Entropy respec-
tively. The hyper-parameter λ weighs the auxiliary loss
terms for pose prediction. The shorthand notation τi,t
represents the t-th training window in the i-th ex-
pert demonstration of the training dataset comprising of
((It,xt), . . . , (It+K−1,xt+K−1); IT = IH); u∗(i, t) and
q∗(i, t) are the corresponding ground truth commands, and
û(τi,t) and q̂(τi,t) are shorthand notations for the network
predictions on that window. During training we always set
the target frame IT to be the last frame of the expert
demonstration IH .

Model Ablations. We refer to our full model as GEECO-
F (or just F for short) as depicted in fig. 3. However, in
order to gauge the effectiveness of our different architecture
design decisions, we also consider two ablations of our full
model which are briefly described below.

GEECO-R: This ablation has ψDYN and ψDIFF removed
and ψOBS is responsible for encoding the current observation
It and the target image IT and the feature distance is used
for goal conditioning. Thus, the state tensor becomes st =
ψOBS(It)⊕xt⊕(ψOBS(IT)−ψOBS(It)), where ⊕ denotes
concatenation along the channel dimension. This residual
state encoding serves as a baseline for learning meaningful
goal distances in the feature space induced by ψOBS .

GEECO-D: This ablation has only the ‘motion branch’
ψDYN removed. The state tensor is comprised of st =
ψOBS(It) ⊕ xt ⊕ ψDIFF (ρ̂(It, IT)). This gauges the ef-
fectiveness of using an explicitly shaped goal difference
function over an implicitly learned one like in GEECO-R.

IV. EXPERIMENTS

Our experimental design is guided by the following ques-
tions: (1) How do the learned skill primitives compare
to representative MPC and IL approaches? (2) Can our
controller deliver on its aspired versatility by transferring its
skills, acquired only on simple cubes, to novel shapes, tasks
and adverse conditions?

Experimental Setup and Data Collection. We have de-
signed a simulation environment, GOAL2CUBE2, containing
four different tasks to train and evaluate our controller on

which are presented in fig. 4. In each task one of the small
cubes needs to be moved onto one of the larger target pads.
The scenario is designed such that the task is ambiguous
and the controller needs to infer the object to manipulate
and the target location from a given target image depicting
the task to perform. We use the MuJoCo physics engine [27]
for simulation. We adapt the Gym environment [28] provided
by [29] featuring a model of a Fetch Mobile Manipulator [30]
with a 7-DoF arm and a 2-point gripper1. For each skill,
i.e. pushing and pick-and-place, we collect 4,000 unique
expert demonstrations successful task completions in simu-
lation according to a pre-computed plan. At the start of each
demonstration, all object positions and the joint positions of
the arm are randomised. Each demonstration is four seconds
long and is recorded as a list of observation-action tuples at
25 Hz resulting in an episode length of H = 100.

Baselines for Goal-Conditioned VMC. Our first baseline,
VFS [3], is a visual MPC which runs on a video predic-
tion backbone. A CEM-based [12] action sampler proposes
command sequences over a short time horizon which are
evaluated by the video predictor. The sequence which results
in a predicted observation closest to the goal image is
executed and the process is repeated until termination. We
use SAVP [31] as action-conditioned video predictor and
train it on our datasets with the hyper-parameters reported for
the BAIR robot-pushing dataset [32]. Since the time horizon
of our scenarios is much longer than SAVP’s prediction
horizon, we estimate an upper-bound of the performance of
VFS by providing intermediate goal images.2 Our second
baseline, TECNET [4], is an IL model which is capable of
quick adaptation given the demonstration of a new task. The
demonstration can be as sparse as start and end image of
an executed trajectory making it applicable to our setup. We
employ TECNET in its one-shot imitation configuration.

Training and Evaluation Protocol. For each skill, we
split the demonstrations into training, validation and test sets
with a ratio of 2 : 1 : 1 respectively while keeping the task
distributions balanced. We train all models for 300k gradient
update steps using the Adam optimiser [33]. After each
epoch, we evaluate the controller performance on the val-
idation set and select the best performing model checkpoints
for the final evaluation on the test set. During task execution,
we monitor the following performance metrics: (1) REACH:
If the robot touches the object it is supposed to manipulate
at least once during the episode, we count this as a reaching
success. (2) PICK: If the palm of the robot’s gripper touches
the correct object at least once during the episode while the
fingers are closed, we count this as a picking success. (3)
PUSH / PLACE: If by the end of the episode the correct
object sits on the designated goal pad, we count this as a
task success in the respective skill. Each evaluation episode
is terminated after 200 timesteps (8 seconds).

Basic Manipulation Results. We start our investigation

1Despite the robot having a mobile platform, its base is fixed during all
experiments.

2HVF [10] employs a similar ‘ground truth bottleneck’ scheme to upper-
bound a visual MPC baseline.

REDONBLUE REDONGREEN YELLOWONBLUE YELLOWONGREEN
TA

R
G
ET
IM
A
G
E

Fig. 4: Basic manipulation tasks in GOAL2CUBE2. In each task, one of the small cubes (red or yellow) needs to be moved
onto one of the target pads (blue or green). The tasks can be accomplished via a pushing or pick-and-place manipulation
(target pads are reduced to flat textures for pushing).

FG:CLUTTER BG:PRISMA NUTONCONE BALLINCUP

C
O
N
TR
O
LL
ER
EX

EC
U
TI
O
N

Fig. 5: Generalisation experiments. FG:CLUTTER and BG:PRISMA are variations of GOAL2CUBE2 with severe physical
and visual distractions. The background in BG:PRISMA is a video looping rainbow colour patterns. NUTONCONE and
BALLINCUP require the application of the pick-and-place skill to novel shapes and target configurations.

by comparing the performance of our proposed model and
its ablations to VFS and TECNET in the GOAL2CUBE2
scenario and report the results in table I. We treat the tasks
(REACH, PUSH, PICK, PLACE) as Bernoulli experiments and
report their mean success rates for 1,000 trials as well
as their binomial proportion confidence intervals at 0.95.
For pushing tasks we measure nearly perfect reaching and
very strong pushing performance for GEECO-{R,D,F}
outperforming the baselines by up to 80% on final task
success. We also observe that D and F , models which
employ the dynamic image representation, perform signif-
icantly better than the RGB-only ablation R. Likewise, the
general ranking of models also applies to pick-and-place
tasks with D outperforming the baselines by up to 60% task
success. The almost complete failure of VFS and TECNET
for a multi-stage task like pick-and-place is unsurprising
given that both models have been originally designed for
reaching and pushing tasks. Qualitatively, we observe that
VFS reaches the correct object relatively reliably due to its
powerful video predictor but struggles to maintain a firm
grasp on an object due to its stochastic action sampling.
TECNET fares better in that regard since it is a feedforward
regression network like GEECO and can maintain a stable
grasp. However, it often approaches the wrong object to
manipulate due to the fact that its policy is modulated by
the embedding of similar tasks. When confronted with subtle

task variations like a colour change in a small object the RGB
task embedding becomes less informative and TECNET is
prone to inferring the wrong task. An investigation into F’s
inferior PLACE performance compared to D reveals a failure
mode of F : The controller sometimes struggles to drop a
cube above the target pad presumably due to ambiguity in
its depth perception. This suggests that the signal provided
by the dynamic frame buffer at relatively motion-less pivot
points can be ambiguous without additional treatment. When
comparing the versions of GEECO which are trained without
auxiliary pose supervision (λ = 0.0) to their fully supervised
counterparts (λ = 1.0), we observe only mild drops in
mean performance of up to 15%. Interestingly, the RGB-
only ablation R is least affected by the pose supervision and
even improves performance when trained without auxiliary
poses. We hypothesise that this is due to the fact that, in the
relatively static simulation, RGB features are very represen-
tative of their spatial location. Generally, we conclude from
the pose supervision ablation that GEECO’s performance is
not entirely dependent on accurate pose supervision enabling
it to be trained on even fewer data annotations.

Generalisation to New Scenarios. After validating the
efficacy of our proposed approach in basic manipulation
scenarios which are close to the training distribution, we
investigate its robustness and versatility in two additional sets
of experiments. In the following trials we take models R, D

PUSHING PICK-AND-PLACE
REACH [%] PUSH [%] REACH [%] PICK [%] PLACE [%]

VFS3 [3] 66.00 ± 9.28 7.00 ± 5.00 87.00 ± 6.59 40.00 ± 9.60 0.00 ± 0.00
TECNET [4] 54.10 ± 3.09 15.70 ± 2.25 32.00 ± 2.89 15.70 ± 2.25 0.80 ± 0.55
R, λ = 0.0 98.70 ± 0.70 79.80 ± 2.49 86.20 ± 2.14 58.90 ± 3.05 42.50 ± 3.06
D, λ = 0.0 98.70 ± 0.70 88.50 ± 1.98 95.40 ± 1.30 65.80 ± 2.94 54.20 ± 3.09
F , λ = 0.0 98.00 ± 0.87 78.60 ± 2.54 92.70 ± 1.61 71.00 ± 2.81 45.60 ± 3.09
R, λ = 1.0 98.90 ± 0.65 79.80 ± 2.49 84.90 ± 2.22 50.40 ± 3.10 33.70 ± 2.93
D, λ = 1.0 99.30 ± 0.52 86.60 ± 2.11 96.20 ± 1.19 79.90 ± 2.48 61.40 ± 3.02
F , λ = 1.0 99.80 ± 0.28 89.30 ± 1.92 94.80 ± 1.38 78.40 ± 2.55 46.30 ± 3.09

TABLE I: Success rates and confidence intervals for pushing and pick-and-place tasks in the GOAL2CUBE2 scenarios. Best
mean performances are bold-faced. Models whose CIs overlap with the best-performing one, are additionally italicised.

FG:CLUTTER BG:PRISMA
REACH [%] PICK [%] PLACE [%] REACH [%] PICK [%] PLACE [%]

R, λ = 1.0 63.80 ± 2.98 29.40 ± 2.82 15.80 ± 2.26 0.50 ± 0.44 0.10 ± 0.20 0.00 ± 0.00
D, λ = 1.0 77.00 ± 2.61 42.10 ± 3.06 20.70 ± 2.51 94.10 ± 1.46 66.00 ± 2.94 26.50 ± 2.74
F , λ = 1.0 85.50 ± 2.18 62.60 ± 3.00 32.60 ± 2.91 93.40 ± 1.54 62.40 ± 3.00 19.30 ± 2.45

NUTONCONE BALLINCUP
REACH [%] PICK [%] PLACE [%] REACH [%] PICK [%] PLACE [%]

R, λ = 1.0 32.30 ± 2.90 6.90 ± 1.57 0.40 ± 0.39 21.50 ± 2.55 3.90 ± 1.20 0.10 ± 0.20
D, λ = 1.0 66.60 ± 2.92 23.30 ± 2.62 3.30 ± 1.11 50.60 ± 3.10 9.70 ± 1.83 0.20 ± 0.28
F , λ = 1.0 72.20 ± 2.78 26.90 ± 2.75 6.20 ± 1.49 54.60 ± 3.09 16.30 ± 2.29 1.50 ± 0.75

TABLE II: Pick-and-place success rates and confidence intervals of GEECO models trained on GOAL2CUBE2 and employed
in novel scenarios as depicted in fig. 5. The semantics of bold-faced results are the same as in table I.

and F which have been trained on pick-and-place tasks of
GOAL2CUBE2 and apply them to new scenarios probing dif-
ferent aspects of generalisation. We present examples of the
four new scenarios in fig. 5 and present quantitative results
for 1,000 trials in table II. FG:CLUTTER and BG:PRISMA
evaluate whether the pick-and-place skill learned by GEECO
is robust enough to be executed in visually challenging cir-
cumstances as well. The results reveal that the employment
of dynamic images for target difference (D) and additionally
buffer representation (F) significantly improves task success
over the RGB-baseline (R) in the cluttered tabletop scenario
due to the perceptual invariances afforded by the dynamic
image representation. The effect is even more apparent when
the colours of the scene background are distorted. This leads
to a complete failure of R (which is now chasing after
flickering colour patterns in the background) while D and
F can still accomplish the task in about 20% of the cases.
In the second set of experiments (cf. table II, bottom), we
evaluate whether the pick-and-place skill is versatile enough
to be immediately applicable to new shapes and target
configurations. NUTONCONE requires to drop a nut onto a
cone such that the cone is almost entirely hidden. Conversely,
BALLINCUP is a coarse-grained insertion task requiring a
ball to be dropped into a cup such that only a fraction of
its surface remains visible. Besides the handling of unseen

3Due to computational constraints, VFS has only been tested on 100
tasks from the test set.

object geometries, both tasks also pose novel challenges in
terms of task inference because they feature much heavier
occlusions than the original GOAL2CUBE2 dataset which
the model was trained on. Our full model, F , outperforms
the ablations significantly in both new scenarios. Despite
the relatively low PLACE success rates on NUTONCONE
and BALLINCUP, it is encouraging that the model is still
able to handle entirely unseen object geometries and task
setups without any domain randomisation or fine-tuning on
the novel scenarios.

V. CONCLUSIONS

We introduce GEECO, a novel architecture for goal-
conditioned end-to-end visuomotor control utilising dynamic
images. GEECO can be immediately conditioned on a new
task with the input of a single target image. We demonstrate
GEECO’s efficacy in complex pushing and pick-and-place
tasks involving multiple objects. It also generalises well
to challenging, unseen scenarios maintaining strong task
performance even when confronted with heavy clutter, visual
distortions or novel object geometries. Due to its built-in
visual invariances, our model can also complement Sim2Real
approaches by reducing the dependency on sophisticated
randomisation schemes during simulation pre-training of
visuomotor controllers. Our results suggest that GEECO can
serve as a robust model to efficiently learn coarse-grained
manipulation skill primitives like pushing and pick-and-place
of rigid bodies from visual demonstrations.

REFERENCES

[1] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in Conference on Robot Learning, 2017, pp. 334–343.

[2] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvu-
nakool, J. Kramár, R. Hadsell, N. de Freitas, et al., “Reinforcement
and imitation learning for diverse visuomotor skills,” in Proceedings of
Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[3] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine, “Visual
foresight: Model-based deep reinforcement learning for vision-based
robotic control,” arXiv preprint arXiv:1812.00568, 2018.

[4] S. James, M. Bloesch, and A. J. Davison, “Task-embedded control
networks for few-shot imitation learning,” in Conference on Robot
Learning, 2018, pp. 783–795.

[5] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot
visual imitation learning via meta-learning,” in Conference on Robot
Learning, 2017, pp. 357–368.

[6] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi, “Action recognition
with dynamic image networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 40, no. 12, pp. 2799–2813, 2017.

[7] Y. Labbé, S. Zagoruyko, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visu-
ally guided rearrangement planning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3715–3722, 2020.

[8] A. Pashevich, I. Kalevatykh, I. Laptev, and C. Schmid, “Learning
visual policies for building 3d shape categories,” arXiv preprint
arXiv:2004.07950, 2020.

[9] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 2786–2793.

[10] S. Nair and C. Finn, “Hierarchical foresight: Self-supervised learning
of long-horizon tasks via visual subgoal generation,” arXiv preprint
arXiv:1909.05829, 2019.

[11] A. Xie, F. Ebert, S. Levine, and C. Finn, “Improvisation through
physical understanding: Using novel objects as tools with visual
foresight,” arXiv preprint arXiv:1904.05538, 2019.

[12] R. Y. Rubinstein and D. P. Kroese, The Cross Entropy Method:
A Unified Approach To Combinatorial Optimization, Monte-Carlo
Simulation (Information Science and Statistics). Berlin, Heidelberg:
Springer-Verlag, 2004.

[13] Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani, “Object-centric forward
modeling for model predictive control,” in Conference on Robot
Learning, 2020, pp. 100–109.

[14] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and
J. Wu, “Reasoning about physical interactions with object-oriented
prediction and planning,” in International Conference on Learning
Representations, 2019.

[15] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in Advances in neural information processing systems,
2015, pp. 2746–2754.

[16] A. Byravan, F. Lceb, F. Meier, and D. Fox, “Se3-pose-nets: Structured
deep dynamics models for visuomotor control,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 1–8.

[17] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” in International Conference on Machine Learning
(ICML), 2018.

[18] T. Yu, G. Shevchuk, D. Sadigh, and C. Finn, “Unsupervised visuomo-
tor control through distributional planning networks,” in Proceedings
of Robotics: Science and Systems, Freiburg im Breisgau, Germany,
June 2019.

[19] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical
tasks,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–8.

[20] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8565–8574.

[21] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI. Citeseer, 1993,
pp. 1094–1099.

[22] D. Warde-Farley, T. V. de Wiele, T. Kulkarni, C. Ionescu,
S. Hansen, and V. Mnih, “Unsupervised control through non-
parametric discriminative rewards,” in International Conference
on Learning Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=r1eVMnA9K7

[23] A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual
reinforcement learning with imagined goals,” in Advances in Neural
Information Processing Systems, 2018, pp. 9191–9200.

[24] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6292–6299.

[25] Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned
imitation learning,” in Advances in Neural Information Processing
Systems, 2019, pp. 15 324–15 335.

[26] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and T. Tuyte-
laars, “Modeling video evolution for action recognition,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 5378–5387.

[27] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[28] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[29] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” in Advances in neural information processing systems, 2017, pp.
1087–1098.

[30] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
& freight: Standard platforms for service robot applications,”
2018. [Online]. Available: https://fetchrobotics.com/wp-content/
uploads/2018/04/Fetch-and-Freight-Workshop-Paper.pdf

[31] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and
S. Levine, “Stochastic adversarial video prediction,” arXiv preprint
arXiv:1804.01523, 2018.

[32] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual
planning with temporal skip connections,” in Conference on Robot
Learning, 2017.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980

Appendix

5.A GEECO Hyperparameters

In this section, we present additional details regarding the architecture and training

hyper-parameters of GEECO and all its ablations.

Observation Buffer. The observation buffer consists of pairs (Ij,xj), j ∈ [t−

K + 1, . . . , t] of images Ij and proprioceptive features xj representing the K most

recent observations of the model up to the current time step t. The images are

RGB with a resolution of 256 × 256 and the proprioceptive feature is a vector of

length seven containing the angles of the robot’s seven joints at the respective

time step. We have experimented with frame buffer sizes K ∈ {2, 4, 6, 8}. Buffer

sizes smaller than four result in too coarse approximations of dynamics (because

velocities have to be inferred from just two time steps) and consequently in lower

controller performance. However, controller performance also does not seem to

improve with buffer sizes greater than four. We assume that in our scenarios,

four frames are sufficient to capture the robot’s motions accurately enough, which

is in line with similar experiments in prior work [42]. Therefore, we keep the

buffer hyper-parameter K = 4 fixed in all our experiments. At the start of the

execution of the controller, we pad the observation buffer to the left with copies

of the oldest frame, if there are less than K pairs in the buffer assuming that the

robot is always starting from complete rest.

Convolutional Encoder. All convolutional encoders used in the GEECO ar-

chitecture have the same structure, which is outlined in table 5.1. However, the

parameters between the convolutional encoders are not shared. The rationale behind

51

52 5.A. GEECO Hyperparameters

this decision is that the different stacks of convolutions are processing semantically

different inputs: ψOBS processes raw RGB observations, ψDY N processes dynamic

images representing the motion captured in the observation buffer and ψDIF F

processes the dynamic image difference between the current observation and

the target image.

Layer Filters Kernel Stride Activation
Conv1 32 3 1 ReLU
Conv2 48 3 2 ReLU
Conv3 64 3 2 ReLU
Conv4 128 3 2 ReLU
Conv5 192 3 2 ReLU
Conv6 256 3 2 ReLU
Conv7 256 3 2 ReLU
Conv8 256 3 2 ReLU

Table 5.1: The convolutional encoders used in GEECO all share the same structure
of eight consecutive layers of 2D convolutions. They take as inputs RGB images with a
resolution of 256 × 256 and return spatial feature maps with a shape of 2 × 2 × 256.

LSTM Decoder. The spatial feature maps ψOBS(It), ψDY N(ρ̂(It−K+1, . . . , It)),

ψDIF F (ρ̂(It, IT)) obtained from the convolutional encoders are concatenated to

the proprioceptive feature xt containing the current joint angles for the robot’s

7 DoF. This concatenated tensor forms the state representation st, which, in the

full model GEECO-F , has a shape of 2 × 2 × (256 + 256 + 7 + 256). The state

is subsequently fed into an LSTM. The LSTM has a hidden state h of size 128

and produces an output vector ot of the same dimension at each time step. As

shown in prior work [42], maintaining an internal state in the network is crucial

for performing multi-stage tasks such as pick-and-place.

At the beginning of each task, i.e. when the target image IT is set and before

the first action is executed, the LSTM state is initialised with a zero vector. The

output ot at each timestep is passed through a fully connected layer ϕ(·) with 128

neurons and a ReLU activation function. This last-layer feature ϕ(ot) is finally

passed through four parallel, fully-connected decoding heads without an activation

5. Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives53

function to obtain the command vectors and the auxiliary position estimates for

the object and the end effector as described in table 5.2.

Head Units Output
û∆EE 3 change in EE position (∆x,∆y,∆z)
ûGRP 3 logits for {open, noop, close}
q̂EE 3 absolute EE position (x, y, z)
q̂P OS 3 absolute OBJ position (x, y, z)

Table 5.2: The output heads of the LSTM decoder regressing to the commands and
auxiliary position estimates.

Training Details. We train all versions of GEECO with a batch size of 32 for

300k gradient steps using the Adam optimiser [47] with a start learning rate of

1e-4. One training run takes approximately 48 hours to complete using a single

NVIDIA GTX 1080 Ti with 11 GB of memory.

Execution Time. Running one simulated trial with an episode length of eight

seconds takes about ten seconds for any version of GEECO using a single NVIDIA

GTX 1080 Ti. This timing includes the computational overhead for running and

rendering the physics simulation resulting in a lower-bound estimate of GEECO’s

control frequency at 20 Hz. This indicates that our model is nearly real-time

capable of continuous control without major modifications.

5.B GEECO Ablation Details

GEECO-R Our first ablation, which is presented in fig. 5.1, uses a naïve residual

target encoding to represent the distance to a given target observation in feature

space. The residual feature is the difference ψOBS(IT) − ψOBS(Ij), j ∈ [t−K +

1, . . . , t] and should tend towards zero as the observation Ij approaches the target

image IT . Since the same encoder ψOBS is used for observation and target image, this

architecture should encourage the formation of a feature space which captures the

difference between an observation and the target image in a semantically meaningful

54 5.B. GEECO Ablation Details

LSTM𝜓𝑂𝐵𝑆

(𝐼'()*+,… , 𝐼')

𝐼'

𝐼/

𝒙𝒕

𝒔𝒕

3𝒖566

3𝒖789

3𝒒66

3𝒒;<=

(𝒙'()*+,… , 𝒙')

𝜓𝑂𝐵𝑆

𝜓𝑂𝐵𝑆

Figure 5.1: Model architecture of GEECO-R. The same encoder ψOBS is used for RGB
observations It and the target frame IT . For each observed image It, the residual feature
w.r.t. to the target image IT is computed as ψOBS(IT) − ψOBS(It), indicated by the
striped box in st.

way. Since the observation buffer is not compressed into a dynamic image via ρ̂(·),

it is processed slightly differently in order to retain information about the motion

dynamics. For each pair (Ij,xj), j ∈ [t−K+1, . . . , t] containing an observed image

and a proprioceptive feature at time step j, the corresponding state representation

sj is computed and fed into the LSTM which, in turn, updates its state. However,

only after all K pairs of the observation buffer have been fed, the command outputs

are decoded from the LSTM’s last output vector. This delegates the task of inferring

motion dynamics to the LSTM as it processes the observation buffer.

GEECO-D Our second ablation, which is presented in fig. 5.2, uses the dy-

namic image operator ˆρ(·) to compute the difference between each observed frame

Ij, j ∈ [t−K + 1, . . . , t] and the target image IT as opposed to GEECO-R which

represents the difference only in feature space. Since the dynamic difference ρ̂(It, IT)

is semantically different from a normal RGB observation, it is processed with a

5. Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives55

LSTM

𝜓𝐷𝐼𝐹𝐹

𝜓𝑂𝐵𝑆

(𝐼)*+,-,… , 𝐼))

1𝜌(𝐼), 𝐼3)

𝐼)

1𝜌(4)

(𝐼), 𝐼3)

𝒙𝒕

𝒔𝒕

8𝒖:;;

8𝒖<=>

8𝒒;;

8𝒒@AB

(𝒙)*+,-,… , 𝒙))

𝜓𝑂𝐵𝑆

Figure 5.2: Model architecture of GEECO-D. For each image It in the observation buffer,
the dynamic difference to the target image IT is computed using ρ̂(·). The difference
image ρ̂(It, IT) is encoded with ψDIF F before being concatenated to st.

dedicated convolutional encoder ψDIF F and the resulting feature is concantenated to

the state representation st. In order to also capture motion dynamics, the observation

buffer is processed sequentially like in GEECO-R before a control command is issued.

5.C E2EVMC Baseline

We compare GEECO to E2EVMC [42], an unconditioned visuomotor controller,

which we have implemented according to the original paper. We have re-created

a similar environment like in the original paper featuring only a red cube and a

blue target pad which we call Goal1Cube1. This dataset also consists of 4,000

demonstrations per skill and is split into training, validation and test sets with a

ratio of 2 : 1 : 1. Training and testing on this scenario is done to ensure the correct

functionality of the model architecture and verify that GEECO performs at least

as well as an unconditioned controller in an unambiguous scenario. Even though

the task is always the same, i.e. the red cube always goes on top of the blue pad,

56 5.D. Visual Foresight Baseline

we still provide GEECO with the target image in every trial. The unconditioned

baseline, E2EVMC, runs without a target image since it is trained to perform

only one task. We train E2EVMC exactly like GEECO (cf. section 5.A: Training

Details) and select the best model snapshots according to the task performance

on the respective validation sets. We present experimental results for 1,000 trials

on the test set of Goal1Cube1 in table 5.3.

model
Pushing Pick-and-Place

reach push reach pick place
[%] [%] [%] [%] [%]

E2EVMC [42] 95.20 ± 1.32 58.60 ± 3.05 96.10 ± 1.20 72.00 ± 2.78 67.60 ± 2.90
R 98.80 ± 0.67 43.70 ± 3.07 95.30 ± 1.31 73.00 ± 2.75 60.70 ± 3.03
D 99.50 ± 0.44 87.40 ± 2.06 95.80 ± 1.24 77.40 ± 2.59 64.90 ± 2.96
F 99.20 ± 0.55 72.90 ± 2.75 95.90 ± 1.23 83.30 ± 2.31 61.20 ± 3.02

Table 5.3: Comparison of pushing and pick-and-place performance of all versions of
GEECO with E2EVMC on Goal1Cube1. Best task performances are bold-faced.

We observe that GEECO-D and -F perform commensurately with E2EVMC

for both pushing and pick-and-place tasks. Both E2EVMC and GEECO reach the

red cube nearly perfectly with at least 95% success rate. GEECO-D performs best

on this dataset even outperforming E2EVMC by almost 30% mean success rate

for pushing tasks. Again, GEECO-F sometimes exhibits its failure mode at the

pivot point between moving and dropping phase presumably due to ambiguous or

uninformative signals from the motion representation around this phase.

5.D Visual Foresight Baseline

In this section, we explain all hyper-parameters which have been used during

training and evaluation of the Visual Foresight baseline [14].

Video Predictor. We use the official implementation1 of Stochastic Adversarial

Video Prediction (SAVP) [59] as the video prediction backbone of Visual Foresight.

We have not been able to fit the model at a resolution of 256 × 256 on a single
1https://github.com/alexlee-gk/video_prediction

https://github.com/alexlee-gk/video_prediction

5. Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives57

GPU with 11 GB of memory. Hence, we adjusted the image resolution of the video

predictor to 128 × 128 pixels. We use SAVP’s hyper-parameter set which is reported

for the BAIR robot pushing dataset [15] since those scenarios resemble our training

setup most closely. We report the hyper-parameter setup in table 5.4.

Parameter Value Description
scale_size 128 image resolution
use_state True use action conditioning
sequence_length 13 prediction horizon
frame_skip 0 use entire video
time_shift 0 use original frame rate
l1_weight 1.0 use L1 reconstruction loss
kl_weight 0.0 make model deterministic
state_weight 1e-4 weight of conditioning loss

Table 5.4: Hyper-parameter setup of SAVP. Hyper-parameters not listed here are kept
at their respective default values.

Training Details. We train SAVP with a batch size of 11 for 300k gradient steps

using the Adam optimiser [47] with a start learning rate of 1e-4. One training

run takes approximately 72 hours to complete using a single NVIDIA GTX 1080

Ti with 11 GB of memory.

Action Sampling. We use CEM [80] as in the original VFS paper [14] to sample

actions which bring the scene closer to a desired target image under the video

prediction model. We set the planning horizon of VFS to the prediction length

of SAVP, P = 13. The action space is identical to the one used in GEECO and

consists of a continuous vector representing the position change in the end effector

u∆EE ∈ R3 and a discrete command for the gripper uGRP ∈ {−1, 0, 1}. Once

a target image has been set, we sample action sequences of length P according

to the following eqs. (5.1) and (5.2):

u1: P
∆EE ∼ N (µ,Σ) (5.1)

u1: P
GRP ∼ U{−1, 0, 1} (5.2)

58 5.D. Visual Foresight Baseline

where N (µ,Σ) is a multi-variate Gaussian distribution and U{−1, 0, 1} is a uniform

distribution over the gripper states. For each planning step, we run CEM for four

iterations drawing 200 samples at each step and re-fit the distributions to the ten

best action sequences according to the video predictor, i.e. the action sequences

which transform the scene closest to the next goal image. Finally, we execute the

best action sequence yielded from the last CEM iteration and re-plan after P steps.

Goal Distance. We use L2 distance in image space to determine the distance

between an image forecast by the video predictor and a target image (cf. [14]). Since

this goal distance is dominated by large image regions (e.g. the robot arm), it is

ill suited to capture position differences of the comparatively small objects on the

table or provide a good signal when a trajectory is required which is not a straight

line. Therefore, we resort to a ‘ground truth bottleneck’ scheme [68] for a fairer

comparison. Instead of providing just a single target image from the end of an

expert demonstration, we give the model ten intermediate target frames taken every

ten steps during the expert demonstration. This breaks down the long-horizon

planning problem into multiple short-horizon ones with approximately straight-line

trajectories between any two intermediate targets. This gives an upper-bound

estimate of VFS’s performance, if it had access to a perfect keyframe predictor

splitting the long-horizon problem. An example execution of VFS being guided

along intermediate target frames is presented in fig. 5.3.

Execution Time. To account for VFS’s sampling-based nature and the guided

control process using intermediate target images, we give VFS some additional time

to execute a task during test time. We set the total test episode length to 400 time

steps as opposed to 200 used during the evaluation of GEECO. VFS is given 40

time steps to ‘complete’ each sub-goal presented via the ten intermediate target

images. However, the intermediate target image is updated to the next sub-goal

strictly every 40 time steps, irrespective of how ‘close’ the controller has come to

achieving the previous sub-goal. Running one simulated trial with an episode length

of 16 seconds takes about ten minutes using a single NVIDIA GTX 1080 Ti. This

5. Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives59

ta
rg
et

ex
ec
ut
io
n

#2 #3 #5 #9

… …

… …

t80 120 200 360

Figure 5.3: An execution of VFS with the ‘ground truth bottleneck’ scheme. The top
row depicts intermediate target images from an expert demonstration. The bottom row
shows the corresponding state of execution via VFS at time step t.

timing includes the computational overhead for running and rendering the physics

simulation. While this results in an effective control frequency of 0.7 Hz, a like-for-

like comparison between VFS and GEECO can not be made in that regard because

we have not tuned VFS for runtime efficiency in our scenarios. Potential speedups

can be gained from lowering the image resolution and frame rate of the video

predictor, predicting shorter time horizons and pipelining the re-planning procedure

in a separate thread. However, the fundamental computational bottlenecks of visual

MPC can not be overcome with hyper-paramter tuning: Action-conditioned video

prediction remains an expensive operation for dynamics forecasting although pixel-

level prediction accuracy is presumably not needed to control a robot. Additionally,

the action sampling process is a separate part of the model which requires tuning

and trades off accuracy versus execution time. In contrast to that, GEECO provides

a compelling alternative by reducing the action computation to a single forward

pass through the controller network.

60 5.E. TecNet Baseline

5.E TecNet Baseline

We use the official implementation of TecNet for all our experiments2. In table 5.5

we provide a comprehensive list of all hyper-parameters used in our experiments

with TecNet.

Parameter Value Description
iterations 300000 number of gradient updates
batch_size 64 batch size
lr 5e-4 start learning rate of Adam optimiser
img_shape (125, 125, 3) image resolution
support 1 k-shot support of new task
query 5 query examples per task during training
embedding 20 size of task embedding vector
activation elu layer activation function
filters 16,16,16,16 number of filters in each conv-layer of the embedding network
kernels 5,5,5,5 filter size in each conv-layer of the embedding network
strides 2,2,2,2 stride size in each conv-layer of the embedding network
fc_layers 200,200,200 neurons of the fc-layers of the control network
lambda_embedding 1.0 weight of embedding loss
lambda_support 0.1 weight of support loss
lambda_query 0.1 weight of query loss
margin 0.1 margin of the hinge rank loss
norm layer using Layer-Norm throughout the network

Table 5.5: Hyper-parameter setup of TecNet. Hyper-parameters not listed here are
kept at their respective default values.

Training Details. We train TecNet in the one-shot imitation setup and provide

one ‘demonstration’ before the start of the controller execution consisting of only

the first observation and the target image. During training and evaluation, we resize

all images fed into TecNet to 125 × 125 pixels as per the original paper. We train

TecNet with a batch size of 64 for 300k gradient update steps using the Adam

optimiser [47] with a start learning rate of 5e-4. One training run takes about 72

hours to complete using a single NVIDIA GTX 1080 Ti with 11 GB of memory.

Execution Time. Running one simulated trial with TecNet with an episode

length of eight seconds takes about eight seconds using a single NVIDIA GTX 1080
2https://github.com/stepjam/TecNets

https://github.com/stepjam/TecNets

5. Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives61

Ti. This timing includes the computational overhead for running and rendering

the physics simulation resulting in a lower-bound estimate of TecNet’s control

frequency at 25 Hz. This makes TecNet also a viable option for real-time

visuomotor control without any system modifications.

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis
publications. For each publication there should exist a complete statement that is to be filled out and signed by the
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper
itself).

Title of Paper

Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives

Publication Status

 x Published □ Accepted for Publication

 □ Submitted for Publication □ Unpublished and unsubmitted work written
 in a manuscript style

Publication Details

Oliver Groth, Chia-Man Hung, Andrea Vedaldi, Ingmar Posner. “Goal-
Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives”. In:
IEEE International Conference on Robotics and Automation (ICRA). June 2021.

Student Confirmation

Student Name:

Chia-Man Hung

Contribution to the
Paper

- implemented the backbone Visuomotor Control model and reproduced experiment
results in simulation from the original paper
- integrated Visual Foresight (VFS) baseline
- designed and implemented the pushing environment
- collected part of expert demonstrations for model training
- trained models and performed hyperparameter search
- designed and drew network architecture figures
- contributed to the writing of the paper, specifically: Related Work, Experiments

Signature

Date

29/09/2022

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Prof. Ingmar Posner

Supervisor comments

I confirm that the above is an accurate reflection of the candidate’s contributions.

Signature

Date

4/10/2022

This completed form should be included in the thesis, at the end of the relevant chapter.

6
Reaching Through Latent Space: From

Joint Statistics to Path Planning in
Manipulation

In this chapter, we propose a novel approach for motion planning in manipulation.

Dissimilar to visuomotor control work in which we collect expert demonstrations of

entire tasks for training, only randomly sampled robot poses are needed, rendering

the training data collection process easy. We train a latent-variable generative

model of robot poses and plan paths through the structured latent space. We

demonstrate that such a model achieves commensurate performance against estab-

lished optimisation-based and sampling-based planners while having the advantage

of smoother paths and shorter planning time in certain scenarios. This work was

presented at IEEE International Conference on Robotics and Automation (ICRA)

in May 2022 and is published as:

Chia-Man Hung, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones, Martin

Engelcke, Ioannis Havoutis, Ingmar Posner. “Reaching Through Latent Space:

From Joint Statistics to Path Planning in Manipulation”. In: IEEE Robotics and

Automation Letters (RA-L). Feb. 2022.

63

5334 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Reaching Through Latent Space: From Joint
Statistics to Path Planning in Manipulation

Chia-Man Hung , Graduate Student Member, IEEE, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones,
Martin Engelcke, Ioannis Havoutis , Member, IEEE, and Ingmar Posner

Abstract—We present a novel approach to path planning for
robotic manipulators, in which paths are produced via iterative
optimisation in the latent space of a generative model of robot poses.
Constraints are incorporated through the use of constraint satisfac-
tion classifiers operating on the same space. Optimisation leverages
gradients through our learned models that provide a simple way
to combine goal reaching objectives with constraint satisfaction,
even in the presence of otherwise non-differentiable constraints.
Our models are trained in a task-agnostic manner on randomly
sampled robot poses. In baseline comparisons against a number of
widely used planners, we achieve commensurate performance in
terms of task success, planning time and path length, performing
successful path planning with obstacle avoidance on a real 7-DoF
robot arm.

Index Terms—Constrained motion planning, representation
learning, deep learning in grasping and manipulation, optimization
and optimal control.

I. INTRODUCTION

PATH planning is a cornerstone of robotics. For a robotic
manipulator, this generally consists of producing a se-

quence of joint states the robot needs to follow in order to
move from a start to a goal configuration. This requires that the
poses along the sequence are kinematically feasible while at the
same time avoiding unwanted contact either by the manipulator
with itself or with potential objects in the robot’s workspace.
Due to its importance, path planning is a richly explored area
in robotics (e.g. [1]–[6]). However, traditional approaches are
often marred by a number of issues. As the state-space dimen-
sionality increases and constraints become more constrictive,

Manuscript received September 9, 2021; accepted January 29, 2022. Date of
publication February 23, 2022; date of current version March 15, 2022. This
letter was recommended for publication by Associate Editor J. D. Hernandez
and Editor S. J. Guy upon evaluation of the reviewers’ comments. This work was
supported in part by the UKRI/EPSRC Programme under Grant EP/V000748/1,
in part by NIA under Grant EP/S002383/1, in part by RAIN under Grant
EP/R026084/1, and in part by ORCA under Grant EP/R026173/1, the Clarendon
Fund and Amazon Web Services as part of the Human-Machine Collaboration
Programme. (Corresponding author: Chia-Man Hung.)

Shaohong Zhong, Oiwi Parker Jones, Martin Engelcke, and Ingmar Posner
are with the Applied AI Lab (A2I), Oxford Robotics Institute (ORI), Univer-
sity of Oxford, Oxford OX2 6NN, U.K. (e-mail: shaohong@robots.ox.ac.uk;
oiwi@robots.ox.ac.uk; engelcke@deepmind.com; hip@robots.ox.ac.uk).

Chia-Man Hung and Walter Goodwin are with the Applied AI Lab (A2I),
U.K., and also with the Dynamic Robot Systems (DRS), Oxford Robotics
Institute (ORI), University of Oxford, Oxford OX2 6NN, U.K. (e-mail: chia-
man@robots.ox.ac.uk; walter@robots.ox.ac.uk).

Ioannis Havoutis is with the Dynamic Robot Systems (DRS), Oxford Robotics
Institute (ORI), University of Oxford, Oxford OX2 6NN, U.K. (e-mail: ioan-
nis@robots.ox.ac.uk).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2022.3152697, provided by the authors.

Digital Object Identifier 10.1109/LRA.2022.3152697

Fig. 1. A VAE is trained to produce a latent representation z of the joint states
and corresponding end-effector positions and an obstacle collision predictor
learns the probability of collision. Once trained, gradients through the VAE
decoder and collision predictor enable optimisation in the latent space to bring
the decoded end-effector position closer to the target position. Performing this
optimisation iteratively with a learning rate produces a series of latent values
{zi}Ti=1 that describe a joint-space path to the target that satisfies the collision
constraint.

the decreasing efficiency of traditional planning methods makes
reactive behaviour computationally challenging. While existing
sampling and optimisation-based approaches to the planning
problem can find solutions, they scale super-linearly with a
robot’s degrees of freedom, and those that have optimality
guarantees on resulting paths are guaranteed to achieve this
only asymptotically, after infinite time [3]. Increasing system
and task complexity also requires consideration of multiple
objectives (e.g. performing a certain task while adhering to pose
constraints). Yet, enforcing constraints on the planned motion
can be difficult. Traditional optimisation-based planners can
struggle to incorporate constraints that cannot be expressed
directly in joint space. Sampling-based planners, on the other
hand, struggle to find solutions in scenarios where constraints
render only a small volume of configuration space feasible or
where narrow passages exist [7].

The advent of deep learning has shown that learning-based
approaches can offer some relief in overcoming robotic planning
and control challenges. While a considerable body of work
examines the direct learning of control policies, attempts have
been made to apply deep learning to robotic path planning
(e.g. [8]). Learnt heuristics and neural network collision de-
tectors have been used as drop-in replacements to stages of
traditional methods (e.g. [9]–[11]). A number of works explore
the use of structured latent spaces to effect planning and control
(e.g. [12]–[15]). However, existing works typically require train-
ing for a particular task on carefully curated data. In contrast,
applications of variational autoencoders (VAEs) in the space
of affordance-learning [16] and quadruped locomotion [17]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

HUNG et al.: REACHING THROUGH LATENT SPACE: FROM JOINT STATISTICS TO PATH PLANNING IN MANIPULATION 5335

have highlighted the potential of viewing planning as run-time
optimisation in pre-trained statistical models of state-space to
achieve feasible spatial paths under environmental constraints.

Inspired by [16] and [17], in this work we explore an alter-
native, entirely data-driven approach to both joint-space plan-
ning and constraint satisfaction in a robot manipulation setting
(Fig. 1). In particular, our approach leverages iterative, gradient-
based optimisation to produce a sequence of joint configurations
by traversing the latent space of a VAE. Training data for
this model is trivially obtained as it need not be in any way
task-oriented but can come from random motor-babbling on a
real platform, or simply sampling valid states in simulation.
In addition, performance predictors operating on the latent
space and potentially other observational data (for example, the
positions of obstacles) are trained in a supervised fashion to
output probabilities of certain performance-related metrics, such
as whether the manipulator is in collision with an obstacle. These
networks are frozen after training and are subsequently used in
this gradient-based optimisation approach to planning through
activation maximisation [18], which is the process of using
backpropagation through network weights to find a permutation
to the network inputs that would act to bring about a desired
change in the network’s outputs.

Taking this view of path planning overcomes many of the
obstacles that make robotic path planning a non-trivial task: (a)
as our plans consist of states drawn from a deep generative model
fit to a large dataset of feasible robot poses, and are thus approx-
imately drawn from this data distribution, there is a very high
likelihood that every state in the planned path is valid in terms of
self-collisions and kinematic feasibility; (b) by modelling joint
states and end-effector positions jointly, we avoid the need to
explicitly calculate inverse or forward kinematics at any stage
during planning, even when the goal configuration is given in R3

Cartesian space; (c) by leveraging activation maximisation (AM)
via gradients through performance predictors, we can enforce ar-
bitrarily complex, potentially non-differentiable constraints that
would be hard to express in direct optimisation-based planners,
and might be intractably restrictive for sampling-based planners;
(d) by taking a pre-trained, data-driven approach to collision
avoidance, we do not need any geometric analysis or accurate
3D models at planning time, nor indeed do we need to perform
any kind of explicit collision checking, which is generally the
main computational bottleneck in sampling-based planners [19].

In addition to the advantages in path planning that this method
offers and above and beyond related works, we introduce an
additional loss on the run-time AM optimisation process which
encourages the planning process to remain in areas of high like-
lihood according to our prior belief under the generative model.
In our experiments we find that this contribution is critical in
enabling successful planning that stays in feasible state-space.

II. RELATED WORK

Successful path planning for a robotic manipulator gener-
ally consists of producing a kinematic sequence of joint states
through which the robot can actuate in order to move from a
start to a goal configuration, while moving only through viable
configurations. While goal positions may be specified in the
same joint space as the plan, in a manipulator context it is more
common for the goal position to be specified in R3 Cartesian
end-effector space, or R6 if the SO(3) rotation group is included
as well. Viable configurations are the intersection of feasible
states for the robot - i.e. those that are within joint limits and do

not result in self-collision - and collision-free states with respect
to obstacles in the environment. The intersection of these defines
the configuration space for the robot in a given environment.

As analytically describing the valid configuration space is
generally intractable, sampling-based methods for planning pro-
vide the ability to quickly find connected paths through valid
space, by checking for the validity of individual sampled nodes.
Variants of the Probabilistic Roadmap (PRM) and Rapidly-
exploring Random Tree (RRT) sampling-based algorithms are
widely used [1], [2], and provably asymptotically optimal vari-
ants exists in PRM*, RRT* [3]. These methods suffer from a
trade-off between runtime and optimality: while often relatively
quick to find a feasible collision-free path, they tend to employ
a second, slower, stage of path optimisation to shorten the
path through the application of heuristics. In the presence of
restrictive constraints, both sampling- and optimisation-based
planners can be very slow to find an initial feasible path [7].

Optimisation-based planners start from an initial path or
trajectory guess and then refine it until certain costs, such as
path length, are minimised, and differentiable constraints satis-
fied. Techniques such as CHOMP [4] bridge the gap between
planning and optimal control by enabling planning over path
and dynamics. TrajOpt [20] differs from CHOMP in the nu-
merical optimisation method used and the method of collision
checking. The Gaussian Process Motion Planner [21] leverages
Gaussian process models to represent trajectories and updates
them through interpolation. Stochastic Trajectory Optimization
for Motion Planning (STOMP) [5] is notable in this context as it
is able to produce plans while optimising for non-differentiable
constraints, which our work enables with gradients through
trained performance predictors.

Planning with Deep Neural Networks: A recent line of work
has explored using deep networks to augment some or all compo-
nents of conventional planning methods. Qureshi et al. [10], [11]
train a pair of neural networks to embed point-cloud environment
representations and perform single timestep planning. Iterative
application of the planning network produces a path plan. Ichter
and Pavone [9] learn an embedding space of observations, and
use RRT in this space with a learnt collision checker to produce
path plans, but need data to learn a forward dynamics model in
order to roll out the plan.

Another family of learning-based approaches to planning
learn embedding spaces from high dimensional data, and learn
forward dynamics models that operate on this learnt latent
space. Universal Planning Networks [12] learn deterministic
representations of high-dimensional data such that update steps
by gradient descent correspond to the unrolling of a learned
forward model. The Embed-to-Control works [13], [22] employ
variational inference in deep generative models in which
latent-space dynamics is locally linear, a property that enables
locally optimal control in these spaces. DVBFs [23] improve on
these models by relaxing the assumption that the observation
space is Markovian. PlaNet [24] uses a latent-space dynamics
model for planning in model-based RL. However, planning in
all these models tends to consist of rolling out trajectories in
time, finding a promising trajectory, and executing the given
actions. As such, these techniques tend to become intractable for
longer time horizons, and cannot be thought of as path planning
frameworks.

A different approach is that of encoding movement primitives
under the learning from demonstrations framework. Conditional
Neural Movement Primitives [25] extracts prior knowledge from

5336 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

demonstrations and infers distributions over trajectories condi-
tioned on the current observation. Our approach differs in that we
do not encode trajectories directly, but rather learn a probabilistic
model of robot states and generate trajectories as we optimise
in latent space.

Learning Inverse Kinematics: In this work, by learning a joint
embedding of joint angles q and end-effector positions e, we are
able to optimise for achieving an end-effector target etarget, while
planning state sequences in joint space. Note that we do not care
about the orientation in which the goal is reached, therefore end-
effector orientation is omitted in the formulation of e. Learning
the statistical model of kinematics means we do not need to solve
inverse kinematics (IK) at any point. Prior work has sought to
learn solutions to IK that can cope with its ill-posed one-to-many
nature for redundant manipulators [26], [27], and to overcome
the problems with analytic and numerical approaches [28]–[30].
Ren et al. [27] train a generative adversarial network to generate
joint angles from end-effector positions, with the discriminator
acting on the concatenation of both the input position and gener-
ated joints. This method implicitly maximises p(q|e), but does
not address the multimodality of the true p(q|e) IK solutions.
Bocsi et al. [26] employed structured output learning to learn
a generative model for the joint distribution of joint angles
and end-effector positions. By modelling the joint instead of
conditional distributions, i.e. p(q, e) rather than p(q|e), their
model can capture the multimodal nature of IK, as one set of
IK solutions (e1, q1) can be learnt without compromising the
learning of another set (e1, q2). These works are relevant in the
way in which they use a learnt statistical model to capture the
relationship between q and e. However, we differ from prior
work in that, although we follow the generative approach, we
do not try to find the best q that maximises p(q, e) as is done
in [26], but instead plan in the latent space that decodes to valid
joint configurations, producing smooth trajectories.

While our work is partly inspired by [16] and [17] in its
approach, it significantly extends this prior work both in terms of
method and application domain. In particular, in exploring this
approach in a manipulation context we rely solely on training
poses to structure the latent space. This is in contrast to [17],
where, in a quadruped locomotion context, structure is induced
via especially designed stance labels. Like [16], who first pro-
posed the use of AM for constrained optimisation in a structured
latent space in the context of affordance learning, we consider
environmental constraints. However, our agent operates in a
significantly more complex configuration space to achieve real-
world reaching and obstacle avoidance. In addition, we introduce
an additional loss term that encourages the model to traverse
regions of high likelihood under the learned prior over the latent
variables (i.e. to stay close to the training distribution) during
planning. We demonstrate that this novel loss term increases
efficacy by a large margin, effectively encouraging kinematic
feasibility of the plans produced.

III. PATH PLANNING AS OPTIMISATION IN LATENT-SPACE

Our approach to path planning first learns a latent represen-
tation of the robot state by observing random (feasible) arm
configurations. We then learn high-level performance predictors
acting on this latent space as well as environment information
to guide optimisation in latent space.

A. Problem Formulation

Suppose we have a dataset of joint angles and end-effector
positions x = {(qi, ei)}mi=1. We use a VAE to learn a generative
latent-variable model of x. When sampled, we expect the gener-
ative model to produce data that conform to the forward kinemat-
ics (FK) relationship. While we do not leverage the FK informa-
tion at runtime, we use it during training to evaluate the sample
consistency of the generative model, i.e. how well the samples of
joint angles and corresponding Cartesian end-effector positions
match the actual system. We opt to encode (qi, ei) jointly as the
information is readily available from routine robot operation and
it avoids the ambiguity usually associated with mapping from the
manipulator’s Cartesian workspace to a valid joint configuration,
thereby simplifying the inference task. To solve path planning in
this approach, we use AM to iteratively backpropagate position
error relative to a reaching goal into the latent space [18].
In addition, we exploit the probabilistic nature of our model
by encouraging solutions to traverse regions of latent space
of high likelihood under prior belief via a prior loss. Via the
decoder, each location in latent space can be decoded into a
robot configuration such that trajectories in latent space, when
decoded, result in sequences of robot poses.

We posit, first, that this approach will produce valid paths
from an initial end-effector position to the given target position.
Our second hypothesis is that the accuracy of reaching operation
will be correlated with the sample consistency of the model. That
is, if the model demonstrates a closer coupling of joint angles
and Cartesian end-effector position, as defined by the analytic
FK relationship, then it will produce more accurate reaching
solutions via AM. We will demonstrate how the approach can
be extended to deal with reaching tasks while avoiding obstacles.
One strength of this approach is the conceptual ease with which
additional constraints can be added.

B. Learning a Latent Representation of Robot State

Our aim is to learn a generative model of x. This can be
accomplished with a variational autoencoder (VAE) [31], [32],
which defines an encoder qφ(z | x) and decoderpθ(x | z), where
z is a learned latent representation. To train the VAE, we would
like to maximise the evidence, pθ(x) =

∫
pθ(x | z)pθ(z)dz,

which is generally intractable. A common alternative there-
fore is to maximise the evidence lower bound (ELBO), where
LELBO ≤ log p(x):

LELBO = Ez∼qφ(z|x) log pθ(x | z)
︸ ︷︷ ︸

Reconstruction Accuracy

−DKL [qφ(z | x) || p(z)]︸ ︷︷ ︸
KL Term

(1)

To trade off between reconstruction accuracy and the KL term, a
β hyperparameter is often added to the ELBO formulation [33].
Rather than setting this hyperparameter manually [33], we adopt
an alternative, dynamic GECO approach [34]. The GECO ob-
jective formulates the ELBO loss as a constrained optimisation
problem, using a Lagrange multiplier λ, such that

LGECO = −DKL[qφ(z | x) || p(z)]︸ ︷︷ ︸
KL Term

+λ Ez∼qφ(z|x) [C (x, x̂)]
︸ ︷︷ ︸

Reconstruction Error Constraint

,

(2)

where x̂ is the reconstruction of x through the VAE. The
reader is referred to [34] for implementation details on how
λ is updated. The Lagrangian optimises the KL divergence

HUNG et al.: REACHING THROUGH LATENT SPACE: FROM JOINT STATISTICS TO PATH PLANNING IN MANIPULATION 5337

subject to Ez[C(x, x̂)] ≤ 0, for a given constraint function C.
The constraint typically models an upper bound on a predefined
reconstruction error (e.g. an L2 loss):

C (x, x̂) = ‖x− x̂‖2 − τ (3)

Although the GECO formulation still contains a hyperparameter,
τ ≥ 0, this represents an interpretable quantity: an upper bound
on the reconstruction error. In practice, this is easier to work with
than tuning the β hyperparameter in the latent space, which is
difficult to interpret. VAEs in our experiments are trained by
optimising the GECO objective with the L2 reconstruction loss.

C. Activation Maximisation for Path Planning Under a Prior
Loss

Given a target position etarget, the aim is to produce a sequence
of joint configurations (q0, . . . , qT) that drive the robot’s end-
effector from its initial position e0 to an end position eT within
a distance tolerance ‖eT , etarget‖2 < γ. This can be achieved in
the probabilistic model through the iterative use of AM [18].

Let the initial x0 be encoded such that the corresponding
latent configuration z0 is drawn from the posterior. Decoding z0
then gives rise to x̂0 = {q̂0, ê0}. More generally, x̂ = {q̂, ê}.
Let ‖ê0, etarget‖2 denote the Euclidean distance between ê0 and
etarget, then we can compute an L2 loss that we backpropagate
through the decoder pθ(e, q | z). However, rather than update
the network weights, we use AM to update the latent vector.
In particular, given the AM objective, latent representations
are updated iteratively in the following way, where αAM is the
learning rate and ∇LAM is the gradient of the AM loss with
respect to the input z:

zt+1 = zt − αAM∇LAM, LAM = ‖ê, etarget‖2︸ ︷︷ ︸
Target Loss

(4)

This produces a progression of latent representations
(z1, . . . , zT), which continues for a set number of T steps.
Through the decoder, these latent representations can be mapped
to joint configurations (q1, . . . , qT). If the kinematics rela-
tionships represented by the decoder network are valid, and a
sufficient number of steps T are taken, then we expect the final
joint angle configuration qT to correspond to a new end-effector
position eT such that ‖eT , etarget‖2 < γ. Starting with the initial
position, the sequence of decoded end-effector positions repre-
sents a spatial path (e0, . . . , eT).

Without modification, AM may often drive the values z
into parts of the latent space that have not been seen during
training. Decoding these latent representations can lead to poor
(q, e) pairs that are inconsistent with the desired kinematics.
To encourage the optimisation to traverse regions in which
the model is well defined (i.e. to stay as close to the training
distribution as possible) we introduce an additional loss term
to the AM objective consisting of the likelihood of the current
latent representation under its prior p(z), such that

LAM = ‖ê, etarget‖2︸ ︷︷ ︸
Target Loss

+λprior (− log p(z))︸ ︷︷ ︸
Prior Loss

(5)

This encourages the reconstructed joint configurations to remain
valid. Again, λprior is tuned automatically during training using
a GECO formulation, by selecting an upper bound on the prior
loss.

Fig. 2. Left: Target reaching success vs reaching distance threshold, evaluated
on 1,000 scenarios. Grey lines are the 95% confidence interval of Wilson
score [36]. Adding prior loss in AM objective function improves reaching
success rate. Right: Minimum distance between the end-effector and the target vs
sample consistency error. Lower sample consistency error leads to better target
reaching.

D. Obstacle Avoidance Via Performance Predictors

A key requirement for path planning is obstacle avoidance. In
our framework this is effected by a binary classifier predicting
whether the current arm configuration, as represented in latent
space, is in collision with an obstacle. By back-propagating
gradients forcing the collision response of this classifier to zero
we effectively drive the robot away from obstacles. The classifier
is trained using a binary cross-entropy (BCE) loss while the VAE
weights remain frozen.

When performing AM in the case of obstacle avoidance, we
add an obstacle loss term from BCE to the AM loss in Eq. 5.

LAM = ‖ê, etarget‖2︸ ︷︷ ︸
Target Loss

+λprior (− log p(z))︸ ︷︷ ︸
Prior loss

+ λobs

∑

i

(− log(1− pϑ(z,oi)))

︸ ︷︷ ︸
Obstacle loss

, (6)

where λprior and λobs are tuned jointly using GECO with mutliple
constraints. Avoidance of multiple obstacles can be achieved by
repeatedly deploying the same classifier and adding the resulting
gradients into the optimisation. The ease with which multiple
constraints can be expressed and enforced is an explicit strength
of this approach.

E. Model Selection Through Sample Consistency

While the downstream performance we seek from our models
is better path planning, this is not continuously measurable
during training. For VAE model selection and hyperparameter
tuning, we consider three metrics as predictors of path planning
success: (a) the data reconstruction loss ‖ê− e‖2 + ‖q̂ − q‖2,
(b) ELBO (Eq. 1) and (c) kinematic sample consistency, which
we define as

δ = ‖ê− FK(q̂)‖2 (7)

This sample consistency error δ is the Euclidean distance be-
tween the reconstructed end-effector position ê and the true
forward kinematics (FK) solution for the reconstructed joint
angles q̂. We find that high sample consistency is a better
predictor of a model’s downstream planning performance than
the more traditional ELBO loss alone (Fig. 2 right).

IV. IMPLEMENTATION DETAILS

This section provides details on model architecture, model
training and planning, using a 7-Dof Emika Franka Panda arm.

5338 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

TABLE I
THE ARCHITECTURE FOR THE ENCODER, THE DECODER, AND THE OBSTACLE

COLLISION CLASSIFIER. THE VAE ENCODER TAKES INPUT {q,e}, WHERE

dim(q) = 7, dim(e) = 3, AND OUTPUTS μ,σ, WHERE

dim(μ) = dim(σ) = 7. THE VAE DECODER TAKES INPUT z WHERE

dim(z) = 7, AND OUTPUTS RECONSTRUCTION WHICH IS OF THE SAME

DIMENSION AS THE INPUT. THE COLLISION CLASSIFIER TAKES INPUT {z,o},
WHERE dim(z) = 7, dim(o) = 4

A. Architecture Details

The VAE architecture comprises of an encoder and a decoder.
The encoder takes as input x = {q, e} and outputs the mean
μ and variance σ of the posterior distribution qφ(z | x). The
latent encoding z is then obtained using the reparameterisation
trick [31]. A multivariate isotropic Gaussian prior is imposed
on the latent space. The decoder takes as input the latent sam-
ple z and outputs the reconstruction x̂ = {q̂, ê}. The obstacle
collision classifier takes {z,o = {x, y, h, r}} (xy coordinates,
height, radius of the cylinder) as input and has a single output
logit, which when passed through a sigmoid function gives the
predicted probability of collision. The encoder, decoder and
obstacle collision classifier each contains four fully connected
hidden layers of 2048 units, but differ in input and output layers,
as shown in Table I.

B. Training Data Generation

In this evaluation, we consider cylindrical objects,1 which are
easily represented in state space as tuples {q, e,o, c}, where
q = (θ1, . . ., θ7) represents the robot joint configurations; e =
(e1, e2, e3) the end-effector coordinates; o = (x, y, h, r) the ob-
stacle coordinates, height and radius; and c ∈ {0, 1} the binary
collision label. Joint configurations q are sampled uniformly
within the joint limits. We take the modified Denavit–Hartenberg
parameters in the Panda arm documentation to characterise
the forward kinematics relationship, e = FK(q). To generate
the position of the obstacles, for each obstacle, we sample a
distance to origin L, an angle θobs in [0, 2π) uniformly and
set x = L cos(θobs), y = L sin(θobs). MoveIt’s planning scene
interface is used to check whether the arm is in self-collision or
in collision with the table; joint configurations that are in such
collisions are discarded. We also use MoveIt’s planning scene
interface to label collision with obstacles in the training data. The
dataset contains an equal number of samples in and not in colli-
sion with the obstacles. In total, the dataset contains 100 k data
points, of which 80 k are used for training and 20 k for validation.

C. Obstacle Scenario Generation

In our experiments, scenarios are generated by sampling a
given number of obstacles and two sets of joint angles – one for
the initial robot configuration and another for the target position.
The joint angle samples for the target are only used to compute

1Our approach readily extends to other obstacle geometries, extending to
observation space.

the target position through the FK model of the Panda arm that
we characterised and are not known to the planner. The obstacles
and the target are generated while ensuring that there is at least a
feasible set of joint angles reaching the target without collision
with the obstacles. The first obstacle is sampled between the
initial end-effector position and the target position. Subsequent
obstacles are either sampled randomly or sampled between
the initial end-effector position and the target position, with a
probability of 50% each. The model is evaluated on scenarios
in which it would collide with the obstacles if the obstacle loss
term was not added to the total loss in the AM objective function.

D. Training Details

The input values to the VAE and the collision classifier are
standardised, and the output values de-standardised, according
to the mean and the standard deviation of the training data. The
model is trained using a batch size of 256 for 16,000 epochs
using the Adam optimiser [35]. To select hyperparameters, a
grid search is run on the following values: number of hidden
layers, units per layer, latent dimension, GECO reconstruction
target τ (Eq. 3), VAE learning rate, and GECO learning rate.

E. Planning Details

Planning is achieved by applying activation maximisation in
the latent space, as outlined in Algorithm 1.

V. RESULTS

We evaluate our approach in the context of a set of robot
reaching tasks, described below, using a simulated Panda arm.
We further demonstrate that the approach can be deployed on a
physical Panda arm.

A. Path Planning for Target Reaching

Before extending to path planning with additional constraints,
we explore the ability of iterative AM as described in Section III-
C to produce a path plan for goal reaching in free space. We
sample 1,000 start and goal configurations for the robot, with

HUNG et al.: REACHING THROUGH LATENT SPACE: FROM JOINT STATISTICS TO PATH PLANNING IN MANIPULATION 5339

Fig. 3. We project the latent space down to 2D via PCA to visualise AM
with and without prior loss (top)/ with and without obstacle loss (bottom).
The blue region is the encoding of the training distribution. The green and the
purple curves are the robot trajectories from AM. The black dot is the latent
representation of the target joint angles and coordinates. In the case of no prior
loss, the encoding of the robot initial configuration lies in the trusted region,
but drifts to its boundary as we perform gradient descent, which decodes to a
meaningless output. In the case of no obstacle loss, the robot collides with an
obstacle. The link in collision is shown in red.

Fig. 4. Real-world experiments: a rollout of a trajectory using LSPP. Our
latent-space approach operates in state space and therefore trivially transfers to
the real world.

an initial joint position q1 and a goal etarget in R3. Results
of our method are shown in Fig. 2 (left), where we quantify
planning success rates at different distance thresholds. We find
that the addition of the prior loss (Eq. 5) to the AM objective is
instrumental in improving success rates, while when we optimise
AM for reducing distance to goal with no additional constraint,
we observe more frequent infeasible state reconstructions q̂ in
the path plans (Fig. 3 top). With the prior loss, over 90% of the
planning scenes are solved to within a 5 mm threshold of the goal.

B. Obstacle Avoidance

To demonstrate the effect of adding obstacle loss to accom-
plish obstacle avoidance, we show qualitative results both in
simulation and in the real world in Fig. 3 (bottom) and Fig. 4.

To evaluate the efficacy of our approach in finding feasible
plans in the presence of obstacles we generate 1,000 scenarios
for each of one to five cylindrical obstacles. We compare our
approach of latent-space path planning (LSPP) to eight planners
in widespread use: Potential Field [37], [38], RRTConnect [39],
LBKPIECE [40], RRT* [3], LazyPRM* [41], FMT* [42],
BIT* [43] and CHOMP [4]. The artificial potential field baseline
is a classical local collision avoidance method using Jacobian
pseudo-inverse to reduce the error in end-effector position while
avoiding obstacles through the use of virtual repulsive forces.
It is adapted from [38], but instead of using the depth-space
concept to estimate the distances between the robot and the
obstacles, it has direct access to the obstacle configurations to
generate the repulsive vectors. A grid search is conducted on the

hyperparameters (7 in [38]) to optimise for the overall success
rate. For all other baselines we use the default parameters from
their MoveIt OMPL and CHOMP library implementations [44],
[45]. For RRT, LazyPRM* and BIT*, we keep the default plan-
ning time of 5 seconds. CHOMP uses a linear initialisation from
start to goal position and optimises locally, such that it provides
a fair comparison for local planners. Quantitative results are
shown in Table II.

For LSPP, a grid search is conducted on the GECO target
(Eq. 6), GECO smoothing factor and GECO learning rate for
the obstacle loss term to optimise for the overall success rate.
Across all methods, a run is considered a success if the robot
reaches the target within a distance threshold of 1 cm and without
colliding with obstacles.

In terms of planning success rate, LSPP performs commen-
surate to the baselines in the case of one and two obstacles, but
suffers a performance drop when more obstacles are present.
This performance drop is expected and can also be observed
in CHOMP, another optimisation-based planner. Our scenario
generation process does not ensure there exists a feasible so-
lution to a particular scenario. The success rates are therefore
only indicative of relative performance. However, RRTConnect,
RRT*, FMT*and BIT* serve as useful calibration as they are
probabilistically complete, ensuring a solution will be found
if one exists, given sufficient runtime. There are a number of
factors which influence LSPP performance. There exists an
inherent tension due to the AM objective between reaching
a goal and avoiding obstacles. This is, in effect, regulated by
the GECO parameters. As LSPP is inherently a gradient-based
optimisation method it is subject to local minima. Empirically,
this happens more often as the number of obstacles increases,
but could potentially be handled by adding a stochastic recovery
strategy or a post processor. In addition, the optimisation can be
misguided either by a failure in the obstacle classifier or due to
low sample consistency.

Overall LSPP’s average planning time is commensurate
with that of RRTConnect whereas it significantly outperforms
Potential Field, LBKPIECE, CHOMP and FMT*. We note also
that LSPP exhibits consistently lower variances in planning time
than the baselines. In LSPP, each additional obstacle requires an
extra forward and backward pass of the collision predictor, and
thus planning time increases linearly with obstacles. However,
in these experiments this remains a negligible effect on the
overall LSPP time.

The path length is normalised by dividing the actual length
of the planned path by the Euclidean distance between the
initial end-effector position and the target position to ensure a
fairer comparison among different scenarios. It should be noted
that the cost functions in OMPL minimise joint space path
length, and a shortest path in joint space does not necessarily
translate into a shortest path in Cartesian space. RRT* is an
asymptotically optimal algorithm, thus it is not surprising that
it finds near optimal paths. Nevertheless, LSPP outperforms
most of the other baselines.

The artificial potential field baseline is widely used due to its
simplicity and serves as a useful comparison for local collision
avoidance methods. It is in spirit most similar to LSPP, subject
to local minima, and neither of them has theoretical guarantees.
However, it is not directly comparable as it assumes access to
the FK relationship to compute the Jacobian while ours only
relies on it for data collection and model selection, which could
be avoided if we have a separate sensor for corresponding end-
effector positions and if we choose a different model selection

5340 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

TABLE II
COMPARISON OF PERFORMANCE OF OUR LATENT-SPACE PATH PLANNING (LSPP) AND BASELINE MOTION PLANNING ALGORITHMS. FOR EACH NUMBER OF

OBSTACLES, THE EXPERIMENTS ARE RUN ON A TEST DATASET OF 1,000 SCENARIOS. THE VALUES ARE DISPLAYED WITH A 95% CONFIDENCE INTERVAL (WILSON

SCORE [36] FOR PLANNING SUCCESS RATE AND STANDARD DEVIATION FOR PLANNING TIME AND PATH LENGTH). THE PLANNING TIME OF RRT*, LAZYPRM*
AND BIT* ARE OMITTED SINCE THEY OPERATE WITH A FIXED TIME BUDGET OF 5 SECONDS

Fig. 5. Dynamic feasibility of motion plans for Panda arm over 1,000 trajectories. No LSPP motion plans violate the joint limits, indicated by the red segments.
Left: angular velocity. Middle: angular acceleration. Right: angular jerk.

criterion. In terms of performance, it only achieves around
72% success rate even without any obstacles as it struggles
at joint limits. Contrary to global planners, each action can be
executed after each update is computed. Thus, it may appear
to be surprisingly slow, while in reality it achieves real time
performance.

Overall, it is encouraging to see that LSPP, an intuitive and
data-driven formulation, is approaching the performance of es-
tablished path planning algorithms.

C. Dynamic Feasibility

To show that the plans are dynamically feasible, we present
an analysis in Fig. 5. The generated motion plans, when
executed with a constant control frequency of 50 Hz, demand
a relatively small angular velocity, angular acceleration and
angular jerk. These are all well below the maximum joint limits
for the Panda arm, shown as red segments in the figure. This

demonstrates that we can generate feasible state space motion
plans by decoding from the latent trajectory we obtain from
gradient-based optimisation. Additionally, we can potentially
further improve the smoothness by adjusting the learning rate
of the Adam optimiser during the optimisation.

VI. CONCLUSION

We present a novel approach to path planning for robot
manipulation that learns a structured latent representation of the
robot’s state space and uses constrained optimisation to produce
joint space paths to reach end-effector goals. Our approach
differs significantly from related work in that it performs path
planning based on a generative model of robot state, which is
trained in a largely task-agnostic manner. In addition to the
goal and obstacle losses, we introduce a novel constraint which
maximises the likelihood of the latent variable being explored
under its learned prior, thereby encouraging the model to stay
near the training distribution of robot configurations. In doing so,

HUNG et al.: REACHING THROUGH LATENT SPACE: FROM JOINT STATISTICS TO PATH PLANNING IN MANIPULATION 5341

we bypass the traditional computational challenges encountered
by established planning methods while achieving commensurate
performance in terms of reaching success, planning time and
path length. Despite the lack of theoretical guarantees, it is a
practical mechanism for path planning. Future directions include
algorithmic improvement to handle local minima, generalisation
to scenarios with more complex obstacles and dynamic objects,
and tasks that involve interaction.

ACKNOWLEDGMENT

The authors would like to thank the University of Oxford for
providing Advanced Research Computing (ARC) facility in car-
rying out this work (http://dx.doi.org/10.5281/zenodo.22558)
and the use of Hartree Centre resources. They thank Jonathan
Gammell for insightful feedback and discussions, and Rowan
Border for helping with setting up BIT* and interfacing between
OMPL and MoveIt. They also thank Yizhe Wu for recording
real-world experiments, and Jack Collins for proofreading their
work.

REFERENCES

[1] S. M. La valle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., Computer Science Dept., Iowa State University,
1998.

[2] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[4] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. IEEE Int.
Conf. Robot. Automat., 2009, pp. 489–494.

[5] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in Proc.
IEEE Int. Conf. Robot. Automat., May 2011, pp. 4569–4574. [Online].
Available: https://ieeexplore.ieee.org/document/5980280/

[6] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Riemannian
motion policies,” 2018, arXiv:1801.02854.

[7] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipu-
lation planning on constraint manifolds,” Proc. IEEE Int. Conf. Robot.
Automat., vol. 5, no. 4, pp. 625–632, May 2009. [Online]. Available:
https://ieeexplore.ieee.org/document/5152399/

[8] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” Int. J. Robot. Res., vol. 37, no. 4-5, pp. 421–436,
2018.

[9] B. Ichter and M. Pavone, “Robot motion planning in learned latent spaces,”
IEEE Robot. Automat. Lett., vol. 4, no. 3, pp. 2407–2414, Jul. 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8653875/

[10] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion planning
networks,” in Proc. IEEE Int. Conf. Robot. Automat., 2019, pp. 2118–2124.

[11] A. H. Qureshi, J. Dong, A. Choe, and M. C. Yip, “Neural manipulation
planning on constraint manifolds,” IEEE Robot. Automat. Lett., vol. 5,
no. 4, pp. 6089–6096, Oct. 2020.

[12] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal planning
networks: Learning generalizable representations for visuomotor control,”
in Proc. Int. Conf. Mach. Learn., 2018, pp. 4732–4741.

[13] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from raw
images,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 2746–2754.

[14] E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi, “Robust
locally-linear controllable embedding,” in Proc. Int. Conf. Artif. Intell.
Statist., 2018, pp. 1751–1759.

[15] D. Hafner et al., “Learning latent dynamics for planning from pixels,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 2555–2565.

[16] Y. Wu et al., “Imagine that! Leveraging emergent affordances for 3D tool
synthesis,” 2020, arXiv:1909.13561.

[17] A. L. Mitchell et al., “First steps: Latent-space control with semantic
constraints for quadruped locomotion,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2020, pp. 5343–5350.

[18] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-
layer features of a deep network,” Univ. Montreal, Tech. Rep. 1341, 2009.

[19] J. Bialkowski, S. Karaman, M. Otte, and E. Frazzoli, “Efficient colli-
sion checking in sampling-based motion planning,” Springer Tracts Adv.
Robot., vol. 86, pp. 365–380, 2013.

[20] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1251–1270, 2014.

[21] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time Gaussian process motion planning via probabilistic inference,” Int.
J. Robot. Res., vol. 37, no. 11, pp. 1319–1340, 2018.

[22] E. Banijamali et al., “Robust locally-linear controllable embedding,” in
Proc. Int. Conf. Artif. Intell. Statist., 2018, pp. 1751–1759.

[23] M. Karl, M. Soelch, J. Bayer, and P. V. der Smagt, “Deep variational bayes
filters: Unsupervised learning of state space models from raw data,” 2016,
arXiv:1605.06432.

[24] D. Hafner et al., “Learning latent dynamics for planning from pixels,” in
Proc. Int. Conf. Mach. Learn, 2019, pp. 2555–2565.

[25] M. Y. Seker, M. Imre, J. H. Piater, and E. Ugur, “Conditional neural
movement primitives,” in Proc. Robot.: Sci. Syst., 2019, vol. 10.

[26] B. Bócsi, D. Nguyen-Tuong, L. Csató, B. Schölkopf, and J. Peters, “Learn-
ing inverse kinematics with structured prediction,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2011, pp. 698–703.

[27] H. Ren and P. Ben-Tzvi, “Learning inverse kinematics and dynamics of a
robotic manipulator using generative adversarial networks,” Robot. Auton.
Syst., vol. 124, 2020, Art. no. 103386.

[28] D. E. Whitney, “Resolved motion rate control of manipulators and human
prostheses,” IEEE Trans. Man- Mach. Syst., vol. 10, no. 2, pp. 47–53,
Jun. 1969.

[29] A. Goldenberg, B. Benhabib, and R. Fenton, “A complete generalized
solution to the inverse kinematics of robots,” IEEE J. Robot. Autom., vol. 1,
no. 1, pp. 14–20, Mar. 1985.

[30] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,” IEEE Trans. Syst., Man,
Cybern., vol. 16, no. 1, pp. 93–101, Jan. 1986.

[31] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc.
Int. Conf. Learn. Representations, 2014.

[32] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation
and approximate inference in deep generative models,” in Proc. Int. Conf.
Mach. Learn., 2014, pp. 1278–1286.

[33] I. Higgins et al., “beta-VAE: Learning basic visual concepts with a con-
strained variational framework,” in Proc. Int. Conf. Learn. Representa-
tions, 2017.

[34] D. J. Rezende and F. Viola, “Taming VAEs,” 2018, arXiv:1810.00597.
[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. Int. Conf. Learn. Representations, 2015.
[36] E. B. Wilson, “Probable inference, the law of succession, and statistical

inference,” J. Amer. Stat. Assoc., vol. 22, no. 158, pp. 209–212, 1927.
[37] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” in Autonomous Robot Vehicles. Berlin, Germany: Springer, 1986,
pp. 396–404.

[38] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space approach
to human-robot collision avoidance,” in Proc. IEEE Int. Conf. Robot.
Automat., 2012, pp. 338–345.

[39] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in Proc. Millennium Conf. IEEE Int. Conf.
Robot. Automat. Symposia Proc. (Cat. No 00CH37065), 2000, vol. 2,
pp. 995–1001.

[40] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by interior-
exterior cell exploration,” in Algorithmic Foundation of Robotics 8th.
Berlin, Germany: Springer, 2009, pp. 449–464.

[41] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proc.
Millennium Conf. IEEE Int. Conf. Robot. Automat. Symposia Proc. (Cat.
No. 00CH37065), 2000, vol. 1, pp. 521–528.

[42] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning in
many dimensions,” Int. J. Robot. Res., vol. 34, no. 7, pp. 883–921, 2015.

[43] J. D. Gammell, T. D. Barfoot, and S.S. Srinivasa, “Batch informed trees
(BIT*): Informed asymptotically optimal anytime search,” Int. J. Robot.
Res., vol. 39, no. 5, pp. 543–567, 2020.

[44] S. Chitta, I. Sucan, and S. Cousins, “MoveIt! [ROS Topics],” IEEE Robot.
Automat. Mag., vol. 19, no. 1, pp. 18–19, Mar. 2012.

[45] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Automat. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

72

Appendix

6.A Training Details

6.A.1 LSPP Hyperparameters

A grid search is run on the following hyperparameter values. The final values

are chosen by sample consistency.

Parameter Value
Number of hidden layers 2, 4, 8
Units per layer 64, 128, 256, 1024, 2048
Latent dimension 7, 10, 20, 32, 64

GECO reconstruction target τ
0.0001, 0.0002, 0.0004, 0.0006, 0.0008

0.001, 0.0012

Learning rate (GECO) 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007
0.008, 0.009, 0.01, 0.02, 0.05, 0.1

Learning rate (VAE) 0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.01

Table 6.1: Training hyperparameters for grid search. Bold font indicates the values
chosen.

6.A.2 Choice of Hyperparameters

We discuss the effects of some of the hyperparameters on model training and perfor-

mance.

Number of hidden layers and units per layer The number of fully connected

hidden layers and the number of units per layer in the neural network affect its

capacity, which is important for the VAE in modelling the kinematics relationship

and for the obstacle classifier in predicting collision. However, having a network

that is too large (e.g. eight hidden layers) is found to lead to instabilities in training

73

74 6.A. Training Details

and to having diminishing returns in terms of performance. Thus, a grid search is

conducted on the size of the neural network. For memory efficiency, we choose to

perform the grid search on the number of hidden units in powers of two starting

from two hidden layers and 64 units per layer.

Latent dimension The number of latent dimensions determines the capacity

of the latent space to capture the correlation between the joint angles and the

end-effector position. As the expressive power of the decoder is finite, having a

small number of latent dimensions is found to create an information bottleneck

that prevents the VAE from generating accurate reconstructions. The information

preference problem [104] may also be created if we employ a large number of latent

dimensions, which means that many of the latent dimensions may not capture

any useful information, which in turn encourages the decoder to ignore the latent

encoding. This is also not desirable given our motion planning pipeline is based on

latent traversal. Thus, we perform a grid search for the number of latent dimensions,

and find that a dimension of seven (i.e. the same as the number of DoFs of the

robot) achieves the best performance in terms of our metrics.

GECO reconstruction target The GECO reconstruction target τ imposed as

a constraint via a Lagrange multiplier mechanism in GECO [78] is found to be

important for the performance of the VAE model. If the goals are strict (i.e. perfect

reconstruction), as the size of the neural network is limited and thus limiting its

inference and generation capacity, the MSE term in ELBO overwhelms the KL

regulariser due to the Lagrange multiplier, leading to overfitting and a mismatch

between the posterior and the prior. On the other hand, if the goals are loose,

the reconstruction accuracy becomes poor, leading to worse sample consistency.

Thus, we use a grid search on the parameter τ .

Learning rate (GECO) The learning rate for the GECO Lagrange multiplier

determines the responsiveness of the λ parameter to the violation of the GECO

reconstruction target. The higher the learning rate, the more responsive the λ

6. Reaching Through Latent Space: From Joint Statistics to Path Planning in
Manipulation 75

parameter becomes in adjusting the relative weights of the two terms in ELBO in

training the VAE. However, a high GECO learning rate leads to instabilities in

training. The optimal value is then found through a grid search.

6.B Planning Details

6.B.1 Modification of GECO

The following algorithm is applied to update the individual λ parameters using a

modification of the GECO algorithm [78]. The algorithm is applied to different pairs

of loss terms (− log p(z), ∥ê, etarget∥2) and (∑
i(− log(1 − pϑ(z, oi))), ∥ê, etarget∥2) to

compute λprior and λobs at each update step.
Algorithm 1: Update GECO λ

1: read current λt;
2: read loss terms (lt1, lt2);
3: compute constraint violation Ct = lt1 − τgoal;
4: if t=0 then
5: initialise moving average C0

ma = C0;
6: else
7: Ct

ma = αmaC
t−1
ma + (1 − αma)Ct;

8: end if
9: compute update step κt = exp(αGECOC

t
ma) ;

10: update λt+1 = κtλt

6.B.2 Planning Hyperparameters

A grid search on the planning hyperparameters is run on a validation dataset of

obstacle scenarios. The values chosen are given in Table 6.2.

6.C Choice of Baselines

MoveIt [9] is the most widely used framework for robot manipulation. The Open

Motion Planning Library (OMPL) [88] is a collection of sampling-based motion

planning algorithms and is the default planner in MoveIt. In our experiments,

seven MoveIt path planning algorithms are chosen for comparison. In the following,

we provide a summary (mostly condensed from the OMPL documentation) and

the rationale behind our choice.

76 6.C. Choice of Baselines

Parameter Value
Learning rate (AM) αAM 0.03
Learning rate (GECO) αGECO 0.01
Max number of planning steps T 300
Reaching distance threshold γ 0.01
GECO prior loss target τ prior

goal 0.4, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5, 2
Moving average factor αprior

ma for prior loss 0.8, 0.9, 0.95
GECO obstacle loss target τ obs

goal 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5
Moving average factor αobs

ma for obstacle loss 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 0.95

Table 6.2: Planning hyperparameters. Some hyperparameters are fixed. Bold font
indicates the values chosen.

RRTConnect [54] is one of the default planners in MoveIt. It grows two RRTs [58],

one from the start and one from the goal, and attempts to connect them. It is an

improved version of RRT and is probabilistic complete, ensuring a solution will be

found if one exists, given sufficient runtime. It is commonly used and best known

for its fast convergence, even in high-dimensional spaces.

LBKPIECE [87] is the other default planner in MoveIt. KPIECE, a sampling-

based path planning algorithm designed specifically for planning in high-dimensional

spaces, uses a discretisation to guide the exploration of the continuous space. It

offers computational advantages by employing projections from the searched space to

lower-dimensional Euclidean spaces for estimating exploration coverage. LBKPIECE

is a bi-directional variant of KPIECE with lazy collision checking and one level of

discretisation. It is also commonly used and known for its planning efficiency.

RRT* [44] is an asymptotically optimal incremental sampling-based path plan-

ning algorithm. It is an optimal variant of RRT and converges to an optimal

solution in terms of path length after infinite time. This baseline is insightful

in comparing path length.

LazyPRM* [7] is another asymptotically optimal sampling-based planner. The

Probabilistic Roadmap Method (PRM) constructs a roadmap and checks whether

a path exists in the roadmap between a start and goal state. PRM* gradually

6. Reaching Through Latent Space: From Joint Statistics to Path Planning in
Manipulation 77

increases the number of connection attempts as the roadmap grows in a way that

provides convergence to the optimal path. LazyPRM* is a variant of PRM* with

lazy state validity checking. This is another useful baseline for path length.

FMT* [43] stands for Fast Marching Tree. It is another asymptotically optimal

sampling-based planner. The algorithm is specifically aimed at solving complex

motion planning problems in high-dimensional configuration spaces, by performing

a lazy dynamic programming recursion on a set of probabilistically-drawn samples

to grow a tree of paths.

BIT* [25] stands for Batch Informed Trees. It is an anytime asymptotically

optimal sampling-based planner that uses heuristics to prioritise expansion towards

the goal and high-quality paths. It has been shown to outperform existing sampling-

based planning algorithms, e.g. RRT* and FMT*, in terms of computational

cost to find equivalent results.

CHOMP [73] stands for covariant Hamiltonian optimisation for motion planning.

It is a gradient-based trajectory optimisation procedure, and uses two objective

functions: an obstacle term that captures obstacle avoidance and a smoothness

term that captures the dynamics of the trajectory. It is able to avoid obstacles

in most cases, but it can fail if it gets stuck in a local minimum due to a bad

initial guess for the trajectory. OMPL can be used to generate collision-free seed

trajectories for CHOMP to mitigate this issue. Thus, in our experiments, we use

OMPL with the default RRTConnect planner for an initial guess and use CHOMP

as a post-processor. CHOMP is efficient, produces smooth paths and is the most

commonly used optimisation-based approach.

6.D Analysis on Latent Space Representation

The latent space of our VAE encodes pairs of joint position q and end-effector

position e. How accurate is the q -to-e mapping in the latent space? Figure 6.1

78 6.D. Analysis on Latent Space Representation

(left) presents a histogram of sample consistency errors from 10,000 prior samples.

The peak is centred at around 2.5mm and over 95% of the samples fall below 1cm.

What is the completeness of the latent space, i.e. does the latent space cover all

the valid joint space or does it miss parts of it? To answer this question, 10,000

samples are drawn from the prior and decoded to {q̂, ê}. In fig. 6.1 (right), we plot

the sample consistency errors at different end-effector positions ê. We observe that

all the valid joint space is well covered and there is no obvious correlation between

the sample consistency error and the end-effector position.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sample consistency error (mm)

0

100

200

300

400

500

Co
un

t

x (m)

0.80.60.40.20.00.2 0.4 0.6 0.8

y (
m)

0.8
0.6

0.4
0.2
0.0

0.2
0.4

0.6
0.8

z (
m

)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 6.1: Analysis on latent space representation. Left: histogram of sample
consistency errors from 10,000 prior samples. Right: 3d scatter of sample consistency
errors at different end-effector positions.

7
Leveraging Scene Embeddings for

Gradient-Based Motion Planning in Latent
Space

In this chapter, we extend previous work from chapter 6 and probe into the potential

of incorporating scene observation from sensory data into our generative model for

motion planning. This empowers our model to generalise to unseen scenes in the

real world. We illustrate its ability to handle both open and closed-loop planning,

especially useful in adapting to dynamic constraints. Moreover, a constraint on

the orientation of the end-effector is integrated to our model and demonstrated

in reaching pre-grasp poses. Overall, our approach achieves better planning time

and commensurate success rate to established sampling-based planners in both

simulated environment and real world. This work has been submitted to IEEE

International Conference on Robotics and Automation (ICRA) 2023 as:

Jun Yamada∗, Chia-Man Hung∗, Jack Collins, Ioannis Havoutis, Ingmar Posner.

“Leveraging Scene Embeddings for Gradient-Based Motion Planning in Latent Space”.

Under review at: IEEE International Conference on Robotics and Automation

(ICRA). June 2023. ∗ Equal contribution.

79

Leveraging Scene Embeddings
for Gradient-Based Motion Planning in Latent Space

Jun Yamada∗1, Chia-Man Hung∗1,2, Jack Collins1, Ioannis Havoutis2, Ingmar Posner1

Abstract— Motion planning framed as optimisation in struc-
tured latent spaces has recently emerged as competitive
with traditional methods in terms of planning success while
significantly outperforming them in terms of computational
speed. However, the real-world applicability of recent work in
this domain remains limited by the need to express obstacle
information directly in state-space, involving simple geometric
primitives. In this work we address this challenge by leveraging
learned scene embeddings together with a generative model
of the robot manipulator to drive the optimisation process. In
addition we introduce an approach for efficient collision checking
which directly regularises the optimisation undertaken for
planning. Using simulated as well as real-world experiments, we
demonstrate that our approach, AMP-LS, is able to successfully
plan in novel, complex scenes while outperforming competitive
traditional baselines in terms of computation speed by an order
of magnitude. We show that the resulting system is fast enough
to enable closed-loop planning in real-world dynamic scenes.

I. INTRODUCTION

Motion planning is a core capability for robotic manipula-
tion tasks [1], [2] with the fundamental aim of planning
a collision-free path from the current state of an artic-
ulated configuration of joints to a predefined goal joint
or end-effector pose configuration. Sampling-based motion
planning algorithms, such as Rapidly-Exploring Random
Trees (RRT) [3] and Probabilistic Roadmap (PRM) [4],
are widely used within the robotics community as they
have well understood properties in regards to planning time
and collision avoidance. However, sampling-based methods
become increasingly intractable as the problem size increases
(i.e., Degrees-of-Freedom (DoF) of the robot, environment
complexity, and length of the path) and are also typically too
slow to be used for closed-loop planning, as any change to
the environment requires re-planning [5].

Recently, learning-based motion planning [6], [7] has
gained the attention of the robotics community with the
promise of increased computational efficiency and faster plan-
ning times. Notably, Latent Space Path Planning (LSPP) [8]
introduces motion planning via gradient-based optimisation
in the latent space of a VAE. The success rate of LSPP
is commensurate with that of commonly used sampling
and gradient-based motion planners, but with significantly
reduced planning time. By learning a structured latent space
using kinematically feasible and easily generated robot
states, a learned latent space that is optimised via activation
maximisation (AM) [9] can produce diverse and adaptive
behaviours [10]. However, LSPP relies on state-based obstacle
representation given known object shape, which does not
easily transfer to real-world environments.

∗Equal contribution.
1Applied AI Lab (A2I), 2Dynamic Robot Systems (DRS)
Oxford Robotics Institute (ORI), University of Oxford
Correspondence to: jyamada@robots.ox.ac.uk

Fig. 1: Problem setup. AMP-LS generates a collision-
free trajectory via gradient-based optimisation by leveraging
scene embeddings. Our model is trained on kinematically
feasible robot joint states and synthetic point cloud of diverse
scenes. For evaluation, our method is deployed to unseen
scenes including simulated and real-world environments: (a)
Simulated static env: Novel scenes are generated by randomly
placing obstacles on a table. (b) Real-world static env: A
robot avoids the table legs to reach the pre-grasp location
of the unassembled table leg. (c) Moving Conveyor Belt env:
A robot reaches a moving target object while avoiding an
obstacle on the conveyor belt by using closed-loop planning.

To address the issues of LSPP, we introduce a method
significantly extending the prior work by incorporating a col-
lision predictor that leverages scene embeddings and efficient
collision checking, which regularises the optimisation during
planning for safe collision avoidance. We name this new
method Activation Maximisation Planning in Latent Space
(AMP-LS). Specifically, we adapt SceneCollisionNet [11],
trained on diverse synthetic point cloud data of scenes
generated with objects from ShapeNet datasets [12], for our
purpose to facilitate zero-shot transfer to unseen environments
including the real-world scenes (see Fig. 1). Due to the speed
of our approach, we also show that our method can be applied
to closed-loop settings where both the obstacles and goal
pose are moving.

The contributions of our work are threefold: (1) we present
Activation Maximisation Planning in Latent Space (AMP-
LS), which significantly extends LSPP by incorporating
a collision predictor that leverages scene embeddings and
explicit collision checking in order to reguralise optimisation
when planning for obstacle avoidance; (2) we empirically
demonstrate that our approach can be zero-shot transferred to

unseen scenes, including real-world environments, through the
use of a collision predictor that is trained on diverse synthetic
scenes; (3) we show that our method can be applied to closed-
loop settings with reactive behaviour, capable of reaching a
moving target while also avoiding a moving obstacle.

II. RELATED WORKS

Sampling-based motion planning approaches such as
RRT [3], [13] and PRM [4] are widely used to gener-
ate collision-free trajectories in robotics. PRM requires a
pre-computed roadmap; RRT often struggles to find the
solution with the shortest path. While several extensions
such as RRT* [13] and BIT* [14] have been proposed
to achieve asymptotic optimality and reduce computational
cost, these approaches typically demand many samples—a
runtime problem that compounds with increases in robot
DoF, environmental complexity, or path length [15]. Another
limitation of sampling-based motion planners is that they do
not support the real-time planning as re-planning is required
to navigate dynamic environments.

Optimisation-based planning approaches such as covariant
Hamiltonian optimisation for motion planning (CHOMP) [16]
and Stochastic Trajectory Optimisation for Motion Planning
(STOMP) [17] require a large number of trajectory states
when given multiple constraints. These approaches typically
start from an initial guess, a trajectory linking the start and
desired end states, which is refined through minimisation of a
cost function. Computation terminates when a stop condition
is reached or the algorithm times out. The artificial potential
algorithm [18], [19] is perhaps the closest optimisation-based
planning approach to our work. It achieves real-time obstacle
avoidance by creating attractive and repulsive fields around
goals and obstacles. End-effector movement is then guided
by the gradient of these fields. Although appealing in its
simplicity, it struggles to handle additional constraints on
properties that cannot be fully determined by robot joint
configuration.

Several recent works attempt to leverage neural networks
for motion planning. Neural motion planning methods [20],
[21], [6], [22] employ imitation learning (IL) on expert
demonstrations generated by a sampling-based motion planner
or reinforcement learning (RL) [23] to learn motion policies.
However, many samples are required to train such policies
in complex environments. These methods also struggle to
generalise to unseen scenes.

Another set of works performs planning in learned latent
space [24], [8]. L2RRT [21] plans a path in a learned
latent space using RRT. Our work builds upon Latent Space
Path Planning (LSPP) [8]. LSPP plans a trajectory for a
robot via iterative optimisation using activation maximisation
(AM) [9] in a latent space of the robot kinematics learned
by a generative model. Leveraging a collision predictor as
a constraint, LSPP successfully plans a collision-free path
with improved efficiency in planning time. However, LSPP
approximates a scene as a set of cylindrical obstacles and
requires state-based knowledge of the scene, such as position
and shape of obstacles. Such narrow scene definitions and
lack of complete information limits the application of this
method to real-world problems.

To successfully generate a collision-free path in a scene
with obstacles, learning a collision predictor to identify

collision between a robot and the scene is essential. Prior
neural motion planning methods [20], [21], [6], [25] learn
obstacle representations either from 2D images, occupancy
grids, or point clouds, instead of explicitly predicting a
probability of collision. SceneCollisionNet [11] learns the
scene embeddings for a collision predictor from a large
number of synthetic scenes generated with diverse objects
from ShapeNet [12]. To leverage a collision predictor as a
constraint for motion planning, we utilise SceneCollisionNet
and adapt it to work within our latent planning framework.

III. APPROACH

In this work, we introduce a method remarkably extending
the prior work [8] and named it Activation Maximisation Plan-
ning in Latent Space (AMP-LS). Similar to the prior work [8],
AMP-LS leverages a variational autoencoder (VAE) [26], [27]
to learn a structured latent space to generate kinematically
feasible joint trajectories. While a collision predictor in the
prior work relies on state-based obstacle representations,
our collision predictor leverages scene embeddings obtained
from SceneCollisionNet [11] to readily achieve zero-shot
transfer to unseen environments. Further, we present an
approach for explicit collision checking to directly regularise
the optimisation to plan collision-free trajectories. In the
following section, we describe an overview of our model (see
Fig. 2) and optimisation objective for planning.

A. Problem Formulation

Similar to [8], we consider the problem of generating
a collision-free trajectory consisting of robot joint config-
urations {q0, . . . ,qT } for a robot in an environment with
obstacles. A state xt at time t consists of a kinematically
feasible robot joint configuration qt, and its end-effector
position and orientation epost and eorit . The end-effector
orientation eori employs a 6D representation of SO(3), which
consists of the first two column vectors in a rotation matrix
R. This representation is suitable for learning rotations using
neural networks due to its property of continuity [28]. Note
that no prior information of obstacles (e.g., mesh) is given. An
observation ot ∈ Rn×3 at time t is defined as a point cloud
with n points from a third-person camera. ot includes only
scene information; thus, the robot point cloud is excluded
from the raw point cloud. The extraction of the robot point
cloud is readily achieved using MoveIt [29].

B. Learning Latent Representations of Robot State

To plan cohesive paths for the manipulator using a
learned latent space, the latent space must be structured and
disentangled. Leveraging a VAE [26], [27], prior work [8]
has successfully learned such a latent space and captured a
notion of local distance in joint space. In their representation,
poses that are close to each other in joint space are also close
in latent space. Similarly, we also learn a VAE consisting
of an encoder qϕ(z|x) and decoder pθ(x|z), where z is the
latent representation. To train the VAE, rather than directly
maximise the evidence, pθ(x) =

∫
pθ(x | z)pθ(z)dz, which

is generally intractable, we instead optimise the evidence
lower bound (ELBO) LELBO ≤ p(x):

Fig. 2: Our method overview. A VAE (blue) is trained using feasible robot states x consisting of joint states, end-effector
position, and end-effector orientation to learn structured latent representations z (yellow). Then, freezing the weights of
the pre-trained encoder in the VAE, the collision predictor (red) takes as input the learned latent representation z and a
scene point cloud observation o. The collision predictor built upon SceneCollisionNet learns to output a probability ĉ of
collision between the robot arm and obstacles. To plan a collision-free trajectory, gradient-based optimisation is applied to
produce a sequence of latent representations {zt}Tt=1 each of which has low probability of collision with the scene using the
learned collision predictor. A sequence of joint states {qt}Tt=1 is generated by decoding the sequence of latent representations
{zt}Tt=1 using the trained decoder in the VAE.

LELBO = Ez∼qϕ(z|x) log pθ(x | z)︸ ︷︷ ︸
Reconstruction Accuracy

−DKL [qϕ(z | x)∥p(z)]︸ ︷︷ ︸
KL Term

(1)
There is a trade-off in the ELBO loss between the recon-
struction accuracy and the KL term: accurate reconstruction
at the cost of poorly structured latent space, on one hand,
or well structured latent space but noisy reconstruction, on
the other. These terms are often manually weighted in the
ELBO formulation [30]. An alternative to manually tuning
the weight is to use GECO [31]. GECO adaptively tunes
the trade-off between reconstruction and regularisation by
formulating the ELBO loss as a constrained optimisation
problem with a Lagrange multiplier λ:

LGECO = −DKL [qϕ(z | x)∥p(z)]︸ ︷︷ ︸
KL Term

+λ Ez∼qϕ(z|x)[C(x, x̂)]︸ ︷︷ ︸
Reconstruction Error Constraint

(2)
This encourages the model to optimise the reconstruction
accuracy first, until the it reaches a predefined target. The
KL term is then optimised. The generative model is trained
on a dataset of valid joint states of the robot.

C. Activation Maximisation for Motion Planning

Our goal is to plan a trajectory consisting of robot joint
configurations towards a target pose. That is, given a target
end-effector position epostarget and orientation eoritarget, a sequence
of joint configurations {q0, . . . ,qT } that leads a robot to
the target pose is generated. Leveraging the trained VAE
inspired by the prior work [8], we can compute such a
sequence of robot joints by decoding the latent representation
of the VAE model {z0, . . . , zT }. This sequence of the latent
representation is computed in a probabilistic model through
activation maximisation (AM) [9]:

zt+1 = zt − αAM∇LAM (3)

where
LAM = λpos

∥∥êpos, epostarget

∥∥
2︸ ︷︷ ︸

Target Position Loss

+λori
∥∥êori, eoritarget

∥∥
2︸ ︷︷ ︸

Target Orientation Loss

+(− log p(z))︸ ︷︷ ︸
Prior Loss

(4)

In contrast to the prior work [8], we also introduce an end-
effector orientation constraint, which is generally useful for
reaching a pre-grasp pose. The first latent representation z0
is acquired by encoding the current/starting robot state z0 ∼
qϕ(z|x = x0). Note that model parameters are not updated,
but only the parameterised latent variable z is iteratively
updated. The first two terms in LAM (Eq. 4) guide the latent
representation to decode to robot joint state that approaches
the target pose. The third term is the likelihood of the current
representation under its prior, which is introduced in [8] to
encourage the latent representation to stay close to the training
distribution, thus decoding to kinematically feasible pair of
joint position and end-effector pose.

D. Collision Constraints
To generate a collision-free trajectory, similar to that used

in prior work [8], we add collision constraints to the objective
function in Eq. 4 by introducing a collision predictor. While
the prior work uses a narrowly defined state-based obstacle
representation as input to the collision predictor, in our
approach, we adapt SceneCollisionNet [11] to embed scene
observations for zero-shot transfer to unseen environments.
Specifically, the voxel features from SceneCollisionNet are
concatenated with the latent representation of the robot z, the
relative translation, and the rotation from the centre of each
SceneCollisionNet voxel as an input to a collision classifier
to predict the probability of collision ĉ between the robot
and obstacles (see Fig. 2). Note that we train the collision
predictor only on features of voxels closest from each robot
link to ignore unnecessary voxel information. While training
the collision predictor, the weights of the pre-trained VAE are

Algorithm 1 Planning a collision-free path in latent space
via activation maximisation

1: Initialise a buffer D = {q0}, λpos, λori, λcol, qprev = q0

2: z0 ∼ qϕ(z|x = x0)
3: for t = 0, 1, 2, . . . ,H do
4: {q̂t, ê

pos
t , êorit } ∼ pθ(x|z = zt)

5: if t > 0 and pϑ(zt,ot) < γcol then
6: {qprev, . . . , q̂t} = finterpolate(qprev, q̂t)

▷ Linear interpolation between qprev and q̂t

7: if collision in {qprev, . . . , q̂t} then
8: i← index of the first joint state with collision in

the interpolated trajectory
9: m← |{qprev, . . . , q̂t}|

10: Reduce λpos and λori by i
m

11: q̂t ← qprev, zt ← zprev
▷ Back trace to the previous joint and latent representations
qprev and zprev for replanning

12: else
13: D ← D ∪ {qprev, . . . q̂t}
14: if d(êt, etarget) < γ then
15: break
16: end if
17: qprev ← q̂t, zprev ← zt
18: end if
19: end if
20: Compute losses (Eq. 5)
21: Update λpos, λori, and λcol using GECO
22: zt+1 ← zt − αAM∇LAM

t
23: end for

frozen so that the pre-trained latent space does not change.
The collision predictor is trained using the binary cross-
entropy (BCE) loss with ground truth collision labels. To drive
the latent representation away from obstacles, we incorporate
the collision predictor loss into Eq. 4:

LAM = λpos
∥∥êpos, epostarget

∥∥
2︸ ︷︷ ︸

Target Position Loss

+λori
∥∥êori, eoritarget

∥∥
2︸ ︷︷ ︸

Target Orientation Loss

+λcol (− log (1− pϑ (z,o)))︸ ︷︷ ︸
Collision Loss

+(− log p(z))︸ ︷︷ ︸
Prior Loss

(5)

During the planning, three coefficients λpos, λori, and λcol
are automatically and dynamically adjusted by GECO [31].
Minimising the collision loss during AM optimisation drives
the latent representation z towards the representation whose
decoded joint configuration is collision-free.

E. Collision Checking
While prior work [8] simply optimises the objective

function until it reaches a target, we observe that it is hard
to perfectly balance multiple loss terms and that such simple
optimisation often results in collision between the robot and
obstacles. In contrast to the target losses, the collision loss
is inherently a hard constraint that should not be violated
at any point in the trajectory. To address this issue, our
high-level idea is that collision can be predicted and avoided
before execution and the coefficients of the objective function
determine the direction in which the latent representation is
heading towards. Specifically, we introduce explicit collision

checking and automatic rescaling for coefficients during the
planning to avoid obstacles more safely. That is, if a collision
probability of the decoded joint configuration is higher than a
predefined threshold γcol, we reject such robot configuration
that is highly likely to be in collision and keep optimising
the latent space until the decoded joint state is collision-
free. Then, we interpolate a trajectory between the current
and decoded collision-free joint state in m steps and pass
them to the collision predictor to check for collision. If there
is any collision in the interpolated trajectory, we obtain its
index i of the joint state with collision closest to the current
joint state and reduce the coefficients of the target position
and orientation loss by multiplying by i

m , to encourage the
optimisation to minimise the collision loss. Intuitively, this
scaling induces the robot to deviate from the original route
drastically depending on how close it is to an obstacle. This
process continues until the collision-free next joint state is
found and there is no collision in the interpolated trajectory
between the current joint state and the next joint state. In our
experiments, we use the threshold of γcol = 0.3 chosen by a
grid search. For further details, see Algorithm 1.

IV. IMPLEMENTATION DETAILS

A. Architecture Details
Our VAE encoder and decoder consist of three fully

connected hidden layers with 512 units and ELU activation
functions [32]. The input dimension to the VAE is 16,
consisting of robot joint states q ∈ R7, end-effector position
epos ∈ R3 and 6D representation of end-effector rotation
matrix eori ∈ R6. The dimension of the latent space z is 7.
The collision classifier which takes as input the voxel features,
the learned latent representation of robot states, and relative
rotation and translation of each robot link, consists of one
hidden fully connected layer with units of [1024, 256].

B. Training Details
The VAE is trained using kinematically feasible robot joint

configurations. To generate such joint states, we leverage
the Flexible Collision Library (FCL) [33] for self-collision
checking. The VAE model is trained with a batch size
of 256 for about 2M training iterations using the Adam
optimiser [34] with learning rate of 3e−4 on a GeForce RTX
3090. Throughout training, valid robot configurations are
generated on the fly as it is cheap to do so. In total, the
model is exposed to around 500M configurations.

The collision predictor is trained on diverse synthetic
point cloud data to assist zero-shot transfer to scenes with
unseen obstacles. Such scenes are generated by placing objects
randomly sampled from the ShapeNet dataset [12], consisting
of 8828 3D meshes. Each object is placed on a planar surface
with random position and rotation. We sample the number
of objects placed on the surface from a uniform distribution
between 4 and 8. To train the collision predictor, a new
scene is procedurally generated for each training iteration
similar to the prior work [11], and we randomly sample 2048
instances of kinematically feasible robot joint configurations
and check for collisions between each robot configuration
and the generated scene using FCL. A third-person RGB-D
camera is directed towards the centre of the scene to sample
point clouds. The camera extrinsics are randomly sampled for
each query from a predefined range of roll, yaw, and pitch

Fig. 3: Visualisation of real-world experiments. Top: Our method successfully plans a collision-free trajectory in a complex
real-world scene from an impeded start configuration to a pre-grasp goal configuration. By training a collision predictor
on diverse synthetic scenes, our method can readily transfer to such unseen scene. Bottom: AMP-LS can be applied to
closed-loop planning to avoid moving obstacles and reach a moving target object on a conveyor. This reader is referred to
our supplementary video for better visualisation.

parameters. Thus, 2048 unique valid robot configurations and
point clouds are procedurally generated for each iteration to
train the collision predictor. We train the collision predictor for
1M training iterations using SGD with a learning rate of 1e−3
and with momentum 0.9 for approximately 7 days, which is
similar to the training time requirement of SceneCollisionNet.

C. Deploymenet details
In open-loop planning, the current state x0 is encoded to

a latent representation z0. Then, the encoded latent repre-
sentation is iteratively optimised through AM optimisation
(see Eq. 5) until the end-effector reaches the the target pose
with tolerance of γ. In closed-loop planning, while the latent
representation is similarly optimised, a point cloud input for
the collision predictor and the target pose in the objective
function (see Eq. 5) are updated from the current observation
at each time step for reactive motion.

V. EXPERIMENTS

We design our experiments to answer the following guiding
questions: (1) how does AMP-LS perform compared to
traditional motion planning methods such as sampling and
optimisation-based approaches in open-loop settings? (2) does
AMP-LS transfer zero-shot to real-world static environments?
(3) does AMP-LS cope with dynamic environments using
closed-loop planning?

A. Experimental Setup
We evaluate our approach in both simulated and real-

world environments. In simulation, we use the Gazebo
simulator [35] with ROS. In all of simulated and real-world
experiments, we use a 7-DoF Franka Panda robot.

B. Open-Loop Planning for Reaching Static Targets
We evaluate AMP-LS in an open-loop planning setup in

a simulated environment. In this experiment, obstacles in
the environment are static. We select a range of sampling
and optimisation-based motion planners typically used by the
robotics community and available within the unified MoveIt!
library. We compare our method against several sampling-
based motion planners and an optimisation-based motion
planner: RRT-Connect [36], RRT* [13], Lazy PRM* [37],
LBKPIECE [38], BIT* [14], and CHOMP [16]. CHOMP uses
a linear initialisation from start to goal joint positions. Since

we assume that complete knowledge of the environment is not
available, occupancy maps [39] generated from point clouds
are used for collision checking in motion planning baseline
methods. We evaluate the methods on 100 novel scenes where
objects are randomly placed on a table (see Fig. 1 (a)). The
hyperparameters used for GECO to determine coefficients
of our objective function (see Eq. 5) are found via a grid
search similar to that of prior work [8]. For the baselines, we
use the default parameters provided by MoveIt OMPL. For
RRT*, Lazy PRM*, and BIT*, a 1 second planning budget
is given. Across all methods, a motion plan is considered to
be successful if a robot reaches a target within a distance
tolerance of 1cm and orientation tolerance of 15 degrees.

As illustrated in Table I, our method achieves reasonable
success rate with improved planning time compared to most
of the motion planning baselines. Specifically, AMP-LS
outperforms CHOMP, which is also an optimisation-based
motion planner, by a significant margin because CHOMP
requires a large number of trajectories to find a feasible path
in complex scenes, in contrast to AMP-LS. AMP-LS still
has a competitive success rate against RRT-Connect, but the
planning time of AMP-LS is an order of magnitude faster than
the baseline. Traditional motion planning baselines often fail
to find a collision-free path within a short time and sometimes
plan a path with collision due to occlusions in the scenes. In
contrast, our collision predictor is trained on diverse synthetic
scenes with occlusion and can therefore reason about occluded
regions, similar to SceneCollisionNet [11]. While our method
demonstrates reasonable accuracy and improved planning
efficiency, the path length is longer than most of the other
baselines. The longer path length is due to the design of the
planning strategy used in the prior work [8] that tunes the
coefficients of losses automatically to avoid obstacles, thus
not directly minimising the path length. To address this issue,
additional optimisation constraints could be explored in the
future that focus on reducing the path length.

To verify that constraints such as a prior loss and collision
loss successfully induce successful collision-free trajectories,
we also ablate the constraints of our objective functions. As
illustrated in Table I, the success rate of AMP-LS without a
collision loss and prior loss significantly drops. This indicates
that our collision predictor successfully constrains the latent
space even in novel scenes. Furthermore, AMP-LS without the

Success rate Planning time (s) Path length
AMP-LS (ours) 0.75 ± 0.08 0.26 ± 0.13 5.25 ± 2.33
AMP-LS w/o col. loss 0.46 ± 0.10 0.12 ± 0.04 3.68 ± 1.29
AMP-LS w/o prior loss 0.35 ± 0.09 0.24 ± 0.21 3.23 ± 1.12
RRT-Connect 0.86 ± 0.07 1.60 ± 0.89 2.17 ± 0.84
RRT* 0.36 ± 0.09 N/A 2.25 ± 0.78
Lazy PRM* 0.82 ± 0.08 N/A 2.26 ± 0.82
LBKPIECE 0.23 ± 0.08 2.54 ± 1.12 2.34 ± 0.92
BIT* 0.63 ± 0.09 N/A 2.42 ± 1.02
CHOMP 0.39 ± 0.10 2.24 ± 0.79 2.41 ± 0.90

TABLE I: Comparison of performance of our method AMP-
LS against baseline motion planning algorithms and ablation.
We also report 95% confidence interval of Wilson score [40]
for success rate and standard deviation for planning time and
path length. The path length is normalised by dividing the
actual path length by the distance between the initial and
target end-effector positions for fairer comparison.

prior loss results into significantly poorer performance as the
latent representation is optimised to drive into unseen latent
representations which decode to kinematically inconsistent
configurations. This is consistent with findings in [8].

Fig. 4: Coordinates of end-effector and moving targets
in closed-loop settings. To verify the ability of closed-loop
planning in our method, we deploy our method to the real-
world robot arm to reach a moving target.

C. Real-World Open-Loop Planning in a Complex Scene
Our method readily transfers to complex real-world scenes.

To verify this, we evaluate our method in a complex real-world
static scene using open-loop planning as illustrated in Fig. 1
(c). In this task, the robot needs to reach the unassembled
table leg while avoiding the other table legs to achieve a
pre-grasp pose in a furniture assembly task. We control the
robot arm using a torque controller that can track a joint
position command. As shown in Fig. 3 Top, our method can
successfully plan a collision-free trajectory for a robot starting
next to the table legs to avoid the obstacles and reach the
unassembled table leg on the table. This demonstrates that
our collision predictor, trained on diverse synthetic scenes, is
transferable to real-world environments.

D. Closed-Loop Planning for Moving Obstacles and Target
As our method is, by design, an efficient local planner,

AMP-LS is able to act reactively when operated as a closed-
loop system. To verify the closed-loop potential of AMP-LS

we deploy our method on a robot with the goal of reaching
a moving target without obstacles. To control the real-world
robot, a desired next joint position is sent to a torque controller
at 10Hz. Fig. 4 illustrates coordinates of the moving target
and the end-effector position over 50 seconds. Since our
method can predict the next desired joint state quickly, the
robot can reactively follow the moving target.

To further demonstrate the ability of reactive motion using
AMP-LS, we evaluate our method on a setup where the robot
needs to avoid moving obstacles and reach a target object on
a conveyor in both simulated and real-world environments
(see Fig. 3 Bottom). Firstly, we quantitatively evaluate our
method to examine the ability of reactive motion in the
simulated environment. In this evaluation, we randomly
generate obstacles with different size, and the obstacle and a
target object are randomly placed on the conveyor belt. We
observe that the robot successfully avoids the obstacle and
reaches a moving target on the conveyor with the success
rate of 93.3% (28/30 trials) thanks to the fast planning of
our method. Note that we use the threshold of 3cm and
20 degrees in this experiment, because tight tolerance for
reaching a moving target is challenging unless a future state
of the target is estimated and used for planning.

In the real-world experiment, the robot starts moving
towards the target object with the attached AprilTag [41]
when it is observed by the third-person camera while avoiding
a moving obstacle. For closed-loop planning, the collision
predictor takes as input a point cloud data for each time step.
As illustrated in Fig. 3 Bottom, the robot successfully avoids
the moving obstacle to reach and follow the target object.

VI. CONCLUSION

In this work, we present AMP-LS, a learning-based motion
planning approach that generalises to unseen obstacles in
complex environments. AMP-LS is built upon LSPP [8] and
inherits a number of desirable properties. However, AMP-
LS considerably extends LSPP by introducing a collision
predictor trained on diverse synthetic scenes to leverage scene
embeddings for unseen scene generalisation, and explicit
collision checking during planning for safe obstacle avoidance.
We demonstrate that AMP-LS successfully generates collision-
free paths in both unseen simulated and real-world scenes.
The comparison between AMP-LS and several sampling
and optimisation-based motion planning baselines shows
that our method achieves commensurate success rate with
much improved planning time. Furthermore, our real-world
experiments show that AMP-LS can handle both open
and closed-loop planning, which significantly broadens the
applicability to real-world robotic problems. For future work
we look to extend AMP-LS to more complex tasks such as
grasping and pick-and-place.

ACKNOWLEDGMENT
This work was supported by a UKRI/EPSRC Programme

Grant [EP/V000748/1], we would also like to thank the
University of Oxford for providing Advanced Research
Computing (ARC) facility in carrying out this work (http:
//dx.doi.org/10.5281/zenodo.22558).

REFERENCES

[1] J. Yamada, Y. Lee, G. Salhotra, K. Pertsch, M. Pflueger, G. S.
Sukhatme, J. J. Lim, and P. Englert, “Motion planner augmented
reinforcement learning for obstructed environments,” in Conference on
Robot Learning, 2020.

[2] F. Xia, C. Li, R. Martín-Martín, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Leveraging motion generation in reinforcement learning
for mobile manipulation,” arXiv preprint arXiv:2008.07792, 2020.

[3] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Tech. Rep., 1998.

[4] N. M. Amato and Y. Wu, “A randomized roadmap method for path
and manipulation planning,” in Proceedings of IEEE International
Conference on Robotics and Automation, 1996.

[5] A. Short, Z. Pan, N. Larkin, and S. Duin, “Recent progress on sampling
based dynamic motion planning algorithms,” 07 2016, pp. 1305–1311.

[6] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
planning networks,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 2118–2124.

[7] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical motion
planners,” IEEE Transactions on Robotics, vol. 37, no. 1, pp. 48–66,
2020.

[8] C.-M. Hung, S. Zhong, W. Goodwin, O. P. Jones, M. Engelcke,
I. Havoutis, and I. Posner, “Reaching through latent space: From
joint statistics to path planning in manipulation,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 5334–5341, 2022.

[9] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-
layer features of a deep network,” Technical Report, Univeristé de
Montréal, 01 2009.

[10] A. L. Mitchell, M. Engelcke, O. P. Jones, D. Surovik, S. Gangapurwala,
O. Melon, I. Havoutis, and I. Posner, “First steps: Latent-space control
with semantic constraints for quadruped locomotion,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 5343–5350.

[11] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, “Object
rearrangement using learned implicit collision functions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 6010–6017.

[12] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[14] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed
trees (bit*): Informed asymptotically optimal anytime search,” The
International Journal of Robotics Research, vol. 39, no. 5, pp. 543–
567, 2020.

[15] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 2951–2957.

[16] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in 2009 IEEE
International Conference on Robotics and Automation, 2009, pp. 489–
494.

[17] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation,
2011, pp. 4569–4574.

[18] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 1985, pp. 500–505.

[19] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space
approach to human-robot collision avoidance,” in 2012 IEEE inter-
national conference on robotics and automation. IEEE, 2012, pp.
338–345.

[20] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, may 2017.

[21] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[22] A. H. Qureshi and M. C. Yip, “Deeply informed neural sampling for
robot motion planning,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 6582–6588.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[24] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2407–2414, jul 2019.

[25] R. Strudel, R. Garcia, J. Carpentier, J.-P. Laumond, I. Laptev, and
C. Schmid, “Learning obstacle representations for neural motion
planning,” arXiv preprint arXiv:2008.11174, 2020.

[26] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[27] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropa-
gation and approximate inference in deep generative models,” 2014.

[28] Y. Zhou, C. Barnes, L. Jingwan, Y. Jimei, and L. Hao, “On the
continuity of rotation representations in neural networks,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[29] M. Görner, R. Haschke, H. Ritter, and J. Zhang, “Moveit! task
constructor for task-level motion planning,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
190–196.

[30] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual
concepts with a constrained variational framework,” in International
Conference on Learning Representations, 2017.

[31] D. J. Rezende and F. Viola, “Taming vaes,” 2018.
[32] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate

deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[33] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library
for collision and proximity queries,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 3859–3866.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[35] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[36] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 2. IEEE, 2000, pp.
995–1001.

[37] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 521–528.

[38] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics
VIII. Springer, 2009, pp. 449–464.

[39] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, 2013.

[40] E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” Journal of the American Statistical Association, vol. 22,
no. 158, pp. 209–212, 1927.

[41] E. Olson, “Apriltag: A robust and flexible visual fiducial system.” in
ICRA. IEEE, 2011.

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis
publications. For each publication there should exist a complete statement that is to be filled out and signed by the
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper
itself).

Title of Paper

Leveraging Scene Embeddings for Gradient-Based Motion Planning in Latent
Space

Publication Status

 □ Published □ Accepted for Publication

 x Submitted for Publication □ Unpublished and unsubmitted work written
 in a manuscript style

Publication Details

Jun Yamada*, Chia-Man Hung*, Jack Collins, Ioannis Havoutis, Ingmar Posner.
“Leveraging Scene Embeddings for Gradient-Based Motion Planning in Latent
Space”. Under review at: IEEE International Conference on Robotics and
Automation (ICRA). June 2023. *Equal contribution.

Student Confirmation

Student Name:

Chia-Man Hung

Contribution to the
Paper

- designed and set up a simulated environment in Gazebo and ROS
- integrated MoveIt motion planning baselines
- investigated different orientation representations for moving the robot end-effector to
a certain orientation
- trained models and performed hyperparameter search
- collected data of task scenarios
- built Unity demo for visualisation, collision check, and evaluation metrics
- evaluated our trained models and baselines in simulation (both static and dynamic)
- proposed new ideas: adding a safety margin for the colliders of the robot arm,
changing the loss function to enforce the collision constraint as a hard constraint,
interpolating feasible states and adding intermediate steps by optimising collision loss
- contributed to the writing of the paper: part of every section

Signature

Date

29/09/2022

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Prof. Ingmar Posner

Supervisor comments

I confirm that the above is an accurate reflection of the candidate’s contributions.

Signature

Date

04/10/2022

88

8
Discussion

Solving robot manipulation tasks requires putting together several puzzle pieces

as pointed out in the background in chapter 2. Specifically, among the learning

challenges in robot manipulation, this thesis focuses on improving different aspects

of learning a skill policy for manipulation and a fundamental problem – motion

planning. In the previous chapters of this thesis, we have introduced visuomotor

control and latent space planning and investigated their conduciveness in various

manipulation scenarios. In section 8.1, we summarise the key contributions of the

thesis and revisit the guiding questions in chapter 1. In section 8.2, we reflect on the

limitations of the approaches that we proposed. Finally, in section 8.3, we comment

on future research directions to address the identified shortcomings.

8.1 Key Contributions

In chapter 1, we have discussed the main strengths and limitations of visuomotor

control. To address the limitation of distribution shift rooted in the nature of

standard behavioural cloning, in chapter 4, we suggest a mechanism to detect

potential failures due to the compounding errors from distribution shift and recover

from failure before the end of a policy rollout. In particular, we propose Introspective

VMC, a method extending E2EVMC [42] by monitoring policy uncertainty to recover

89

90 8.1. Key Contributions

from potential failures. In essence, it turns a VMC module into a Bayesian VMC

module that comes with an epistemic uncertainty. We verify that this policy

uncertainty is inversely correlated with task success rate and can thus be used

to detect potential task failures. In addition, we propose a recovery strategy

based on following the action with the minimum uncertainty. Empirically, we

show that our proposed recovery strategy outperforms the original VMC without

recovery and several baseline recovery strategies in pushing, pick-and-place, and

pick-and-reach manipulation tasks. Although our approach is built on top of

E2EVMC [42], this framework is potentially also applicable to other deterministic

policies for failure recovery.

Another limitation of visuomotor control is the lack of versatility in task

definition. If we are given a skill policy of putting a red cube into a blue basket,

ideally we would like to reuse this skill to put a yellow cube into a green basket rather

than training a new skill policy from scratch. In chapter 5, we introduce GEECO,

a goal-conditioned visuomotor control policy trained in an end-to-end manner. By

leveraging dynamic images representation to encode the motion of the robot arm

between the current frame and the target frame, we are able to focus on the relevant

parts, such as location and object geometries, that are involved in the task. A

new task can then be specified as a single target image and can be solved without

any further fine-tuning at test time. We compare the performance of our proposed

model against two representative baselines of visual MPC and one-shot imitation

learning and show its usefulness in goal-conditioned pushing and pick-and-place

tasks. Moreover, we demonstrate GEECO’s robustness by successfully learning

versatile skills from visual demonstrations and generalising to challenging, unseen

scenes with visual distortions or novel object geometries.

Visuomotor control requires a significant amount of demonstration trajectories

that may be difficult to collect. E2EVMC hand-designed an expert policy for

pick-and-place in simulation and applied domain randomisation techniques to

transfer from sim to real. For more sophisticated manipulation tasks, it may

be hard to design an expert policy in simulation or time-consuming to manually

8. Discussion 91

collect demonstrations in the real world. In chapter 6, we propose latent space

planning for robot manipulation of which the training data simply comes from

random motor-babbling on a real platform or sampling kinematically feasible

robot states in simulation. For applications, we focus on motion planning, which

is a fundamental skill in manipulation. Our proposed method LSPP learns a

structured latent space of a generative model that captures a model of forward and

inverse kinematics. Constraints for reaching and obstacle avoidance all operate

on this latent space, rendering motion planning as an optimisation process in the

same space. In comparison against several traditional sampling and optimisation-

based motion planning baselines, LSPP bypasses the traditional computational

challenges while achieving commensurate performance in terms of reaching success,

planning time and path length.

One of the main drawbacks of LSPP is that it requires complete knowledge of

the scene as a state-based representation consisting of position and size of primitive

shapes, making it hard to be applied to complex or dynamic scenes. In chapter 7,

we propose AMP-LS, a significant extension to LSPP, by introducing a collision

predictor leveraging scene embeddings, orientation constraints, and explicit collision

checking and automatic rescaling for obstacle avoidance. In contrast to LSPP, the

collision predictor of AMP-LS incorporates environmental constraints by encoding

point cloud observations from a third-person mounted camera pointing towards the

scene. We adapt SceneCollisionNet [11] for encoding scene observations, resulting in

a collision predictor that can reason about the occluded region in the scene. Adding

explicit collision checking during the planning phase intuitively reduces collision.

Empirically, we demonstrate that AMP-LS handles both open and closed-loop

planning in challenging environments, such as complex cluttered static scene and

dynamic scene with a moving obstacle and moving target.

8.2 Limitations

In the previous section, we have recapitulated the key contributions made in this

thesis and explained how each of them addressed the guiding questions posed in

92 8.2. Limitations

chapter 1. We believe the empirical evidence from chapters 4 to 7 supports the

idea of learning visuomotor control policies and planning in latent space as an

effective means of solving robot manipulation tasks. However, our work would not

be complete without putting it into perspective with its limitations to specify to

which extent it is applicable and to identify future research directions to remedy

its shortcomings (cf. section 8.3).

First, a visuomotor control policy is not task-agnostic and displays limited

ability of generalisation beyond its training domains. To alleviate this, in chapter 5,

GEECO leverages dynamic image representation to include within-task and across-

task variations, such as novel colours or object geometries. However, it is still

impossible to exhibit further generalisation if it is not explicitly mitigated by the

model design. For example, if a skill policy is solely trained on pick-and-place

demonstrations, it is unlikely for it to accomplish a pushing task. In fact, the

limitation of generalisability is inherent to all supervised learning approaches and

this goes back to the discussion of policy structures in chapter 2 regarding model

representational power and degree of generalisation.

Second, learning a successful visuomotor control policy is highly dependant on

the quality and quantity of demonstration trajectories. Collecting the required

amount of training data on a real physical platform is often time-consuming or

even infeasible. While in chapters 4 and 5, the demonstrations are easily obtainable

in procedurally generated simulations through a hand-designed expert policy, the

domain transfer from sim to real still requires significant additional effort. It should

be noted that no existing physics simulator can fully capture the physics dynamics

in the real world and unlike in simulation, real sensor observations inevitably contain

noise. While one or few-shot imitation learning [13] holds promise in learning from

very few demonstrations of any given task and generalising to new situations of the

same task after little fine-tuning, the training phase of the generic neural network

to be fine-tuned still requires the same or even more effort. Although E2EVMC [42]

successfully employs domain randomisation techniques to facilitate the domain

transfer, it can still be a daunting process to replicate the exact real-world scene

8. Discussion 93

setup in simulation. For these reasons, improving sample efficiency or developing

simple efficient domain adaptation techniques remains crucial when deploying a

visuomotor control policy onto a real physical platform.

Next, latent space planning is by design an optimisation-based local algorithm,

and is therefore subject to local minima. During planning, multiple loss terms

from different constraints are being optimised simultaneously. Unlike a standard

optimisation problem, e.g., training a neural network, in which we only care about

the final outcome, when planning in the latent space, every step needs to decode to

a kinematically feasible collision-free joint state for a trajectory to be considered a

success. In chapter 6, it has been observed that sometimes the optimisation process

reaches a local minimum, translating to the robot not reaching the target. It is

also common to see that when close to the boundary of an obstacle, the collision

predictor still predicts low collision probability as it is supposed to, resulting in the

optimisation process not prioritising the obstacle loss term with GECO automatically

adjusting the coefficients, causing the robot to collide with an obstacle. To mitigate

this, in chapter 7, we propose explicit collision checking during planning to reduce

the chance of collision using the collision predictor. However, the rescaling of the

coefficients of the loss terms after a collision is predicted sometimes yields detours

in the generated motion plans, which could potentially be further improved.

Finally, robot manipulation tasks are inherently underactuated systems. Even if

the robot is fully actuated, in order to move the inanimate objects in the environment,

the robot needs to first move to a state in which it can interact with the objects

and change the state of the objects, e.g., the robot can first open its gripper and

move into a pre-grasp pose, and then close to gripper to pick up an object. This

characteristic of underactuation has some undesirable effects. For instance, in

chapter 4, this makes reverting back to the most certain state in the recovery

strategy not always possible. However, in our experiments, even if the back trace of

the state is not fully completed, changing to a different state rather than staying in

an uncertain state can still be beneficial to accomplishing a task. On the ground of

underactuation, in the design of latent space planning for manipulation in chapters

94 8.3. Future Work

6 and 7, we could not include the state of the objects in the input and output of

the generative model to learn the robot state and the state of the objects jointly.

Such adjacent latent representations would not always decode to feasible adjacent

states. For example, one AM step to reduce the distance between the end-effector

of the robot and the target object might result in both of them moving towards

each other, while the inanimate object cannot move on its own. This phenomenon

has been observed when designing and carrying out early experiments.

8.3 Future Work

Reflecting upon the current limitations investigated in the previous section, several

lines of future research directions can be established. Regarding the issues related

to limited generalisation and sample efficiency, one possible avenue of future work

would be to innovate the model architecture to induce enough representational power

to express different manipulation skills while encoding the underlying task structure

as an architectural prior. CNNs and MLPs as currently used in the architecture

of visuomotor control may be too general. Object-centric representation [16, 17,

94], based on the structural assumption that the world is made up of objects

and for manipulation tasks, the objective is to modify some attribute of a set of

objects, may facilitate generalisation and improve sample efficiency by considering

objects as equivalent through the use of an abstract representation. Neuro-symbolic

reasoning [26, 82] marry two powerful ideas: neural networks and high-level symbolic

reasoning. One fundamental difference between the two is that for symbolic

systems, representations are discrete and in theory understandable by a human,

while for neural networks, representations are learned during training and often

continuous. Recently, such a fundamental difference challenge has been overcome

in various contexts [61, 99]. Combining learning and reasoning has been shown

more effective than purely symbolic or neural approaches [70, 71]. These are thus

prospective avenues of future work that can potentially benefit visuomotor control

and manipulation tasks in general.

8. Discussion 95

If improving sample efficiency proves to be too challenging and a significant

amount of training data is still required, an alternative approach would be to explore

the potential of a simpler data acquisition process. For visuomotor control, collecting

demonstrations in simulation instead of on a real robotic platform, has the inevitable

undesirable consequence of needing to replicate the real-world setup in simulation

and to rely on domain adaptation techniques as stated earlier. To mitigate this, one

possible future research direction lies in collecting demonstrations in the real world

using crowd-sourcing or an imperfect policy, e.g., using a trained reinforcement

learning agent. An existing line of work focuses on improving the performance of

imitation learning given a small amount of sub-optimal training data. For instance,

to learn from imperfect demonstrations, Wu et al. [96] propose to use confidence

scores to describe the quality of demonstrations in combination with GAIL [36].

Due to the underactuated nature of manipulation tasks, current latent space

planning for manipulation in chapters 6 and 7 has been designed to solve motion

planning, which does not involve interaction with the inanimate objects in the scene.

A natural question of extending it beyond motion planning to other manipulation

tasks involving interaction arises. One naïve approach would be to consider motion

planning as a skill primitive and combine it with other skill primitives, e.g., opening

or closing the gripper, to solve sequential tasks. However, this would make it lose

the appeal of elegance and simplicity. If the challenge of designing an end-to-end

latent space planning algorithm for manipulation could be overcome, this approach

could be leveraged as an important task-agnostic framework for learning a general

skill policy for robot manipulation.

96

References

[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine.
“Learning to poke by poking: Experiential learning of intuitive physics”. In:
Advances in neural information processing systems. 2016, pp. 5074–5082.

[2] Peter K Allen, Aleksandar Timcenko, Billibon Yoshimi, and Paul Michelman.
“Automated tracking and grasping of a moving object with a robotic hand-eye
system”. In: IEEE Transactions on Robotics and Automation 9.2 (1993),
pp. 152–165.

[3] Ershad Banijamali, Rui Shu, Hung Bui, and Ali Ghodsi. “Robust locally-linear
controllable embedding”. In: International Conference on Artificial Intelligence
and Statistics. PMLR. 2018, pp. 1751–1759.

[4] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, and James J. Kuffner.
“Manipulation planning on constraint manifolds”. In: 2009 IEEE International
Conference on Robotics and Automation. Vol. 5. 4. IEEE, May 2009, pp. 625–632.
eprint: 2008.03787. url: http://ieeexplore.ieee.org/document/5152399/.

[5] Aude Billard and Danica Kragic. “Trends and challenges in robot manipulation”.
In: Science 364.6446 (2019), eaat8414.

[6] Botond Bócsi, Duy Nguyen-Tuong, Lehel Csató, Bernhard Schoelkopf, and
Jan Peters. “Learning inverse kinematics with structured prediction”. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2011, pp. 698–703.

[7] Robert Bohlin and Lydia E Kavraki. “Path planning using lazy PRM”. In:
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1.
IEEE. 2000, pp. 521–528.

[8] Francois Chaumette, Patrick Rives, and Bernard Espiau. “Positioning of a robot
with respect to an object, tracking it and estimating its velocity by visual
servoing”. In: ICRA. 1991, pp. 2248–2253.

[9] Sachin Chitta, Ioan Sucan, and Steve Cousins. “MoveIt!” In: IEEE Robotics &
Automation Magazine 19.1 (2012), pp. 18–19.

[10] Silvia Cruciani, Balakumar Sundaralingam, Kaiyu Hang, Vikash Kumar,
Tucker Hermans, and Danica Kragic. “Benchmarking in-hand manipulation”. In:
IEEE Robotics and Automation Letters 5.2 (2020), pp. 588–595.

[11] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox.
“Object rearrangement using learned implicit collision functions”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 6010–6017.

97

2008.03787
http://ieeexplore.ieee.org/document/5152399/

98 References

[12] Tom Drummond and Roberto Cipolla. “Visual tracking and control using lie
algebras”. In: Proceedings. 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149). Vol. 2. IEEE. 1999,
pp. 652–657.

[13] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho,
Jonas Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. “One-shot
imitation learning”. In: Advances in neural information processing systems. 2017,
pp. 1087–1098.

[14] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and
Sergey Levine. “Visual foresight: Model-based deep reinforcement learning for
vision-based robotic control”. In: arXiv preprint arXiv:1812.00568 (2018).

[15] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. “Self-supervised
visual planning with temporal skip connections”. In: Conference on Robot
Learning. 2017.

[16] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner.
“GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent
Representations”. In: International Conference on Learning Representations
(ICLR) (2020).

[17] Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. “Genesis-v2: Inferring
unordered object representations without iterative refinement”. In: Advances in
Neural Information Processing Systems 34 (2021), pp. 8085–8094.

[18] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing
Higher-Layer Features of a Deep Network. Tech. rep. 1341. Also presented at the
ICML 2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.
University of Montreal, June 2009.

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning
for fast adaptation of deep networks”. In: International conference on machine
learning. PMLR. 2017, pp. 1126–1135.

[20] Chelsea Finn and Sergey Levine. “Deep visual foresight for planning robot
motion”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). May 2017, pp. 2786–2793.

[21] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.
“One-Shot Visual Imitation Learning via Meta-Learning”. In: Conference on
Robot Learning. 2017, pp. 357–368.

[22] Fabrizio Flacco, Torsten Kröger, Alessandro De Luca, and Oussama Khatib. “A
depth space approach to human-robot collision avoidance”. In: 2012 IEEE
International Conference on Robotics and Automation. IEEE. 2012, pp. 338–345.

[23] Yarin Gal. “Uncertainty in deep learning”. In: (2016).
[24] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation:

Representing model uncertainty in deep learning”. In: international conference on
machine learning. 2016, pp. 1050–1059.

[25] Jonathan D Gammell, Timothy D Barfoot, and Siddhartha S Srinivasa. “Batch
Informed Trees (BIT*): Informed asymptotically optimal anytime search”. In: The
International Journal of Robotics Research 39.5 (2020), pp. 543–567.

References 99

[26] Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Luis C Lamb,
Leo de Penning, BV Illuminoo, Hoifung Poon, and COPPE Gerson Zaverucha.
“Neural-symbolic learning and reasoning: A survey and interpretation”. In:
Neuro-Symbolic Artificial Intelligence: The State of the Art 342 (2022), p. 1.

[27] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee,
Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, et al. “A survey of uncertainty in deep neural networks”. In:
arXiv preprint arXiv:2107.03342 (2021).

[28] Oliver Groth, Chia-Man Hung, Andrea Vedaldi, and Ingmar Posner.
“Goal-conditioned end-to-end visuomotor control for versatile skill primitives”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2021, pp. 1319–1325.

[29] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. “Deep
Hierarchical Planning from Pixels”. In: arXiv preprint arXiv:2206.04114 (2022).

[30] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. “Dream
to Control: Learning Behaviors by Latent Imagination”. In: International
Conference on Learning Representations. 2019.

[31] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. “Learning latent dynamics for planning from
pixels”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 2555–2565.

[32] Gregory D Hager, Wen-Chung Chang, and A Stephen Morse. “Robot hand-eye
coordination based on stereo vision”. In: IEEE Control Systems Magazine 15.1
(1995), pp. 30–39.

[33] Negin Heravi, Ayzaan Wahid, Corey Lynch, Pete Florence, Travis Armstrong,
Jonathan Tompson, Pierre Sermanet, Jeannette Bohg, and Debidatta Dwibedi.
“Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations”. In: arXiv preprint arXiv:2205.06333 (2022).

[34] John Hill. “Real time control of a robot with a mobile camera”. In: 9th Int. Symp.
on Industrial Robots, 1979. 1979, pp. 233–246.

[35] Noriaki Hirose, Fei Xia, Roberto Martín-Martín, Amir Sadeghian, and
Silvio Savarese. “Deep visual mpc-policy learning for navigation”. In: IEEE
Robotics and Automation Letters 4.4 (2019), pp. 3184–3191.

[36] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In:
Advances in neural information processing systems. 2016, pp. 4565–4573.

[37] Chia-Man Hung, Li Sun, Yizhe Wu, Ioannis Havoutis, and Ingmar Posner.
“Introspective visuomotor control: exploiting uncertainty in deep visuomotor
control for failure recovery”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 6293–6299.

[38] Chia-Man Hung, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones,
Martin Engelcke, Ioannis Havoutis, and Ingmar Posner. “Reaching Through
Latent Space: From Joint Statistics to Path Planning in Manipulation”. In: IEEE
Robotics and Automation Letters 7.2 (2022), pp. 5334–5341.

100 References

[39] Brian Ichter and Marco Pavone. “Robot Motion Planning in Learned Latent
Spaces”. In: IEEE Robotics and Automation Letters 4.3 (July 2019),
pp. 2407–2414. arXiv: 1807.10366. url:
https://ieeexplore.ieee.org/document/8653875/.

[40] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. “Dynamical movement primitives: learning attractor models for
motor behaviors”. In: Neural computation 25.2 (2013), pp. 328–373.

[41] Divye Jain, Andrew Li, Shivam Singhal, Aravind Rajeswaran, Vikash Kumar, and
Emanuel Todorov. “Learning Deep Visuomotor Policies for Dexterous Hand
Manipulation”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 3636–3643.

[42] Stephen James, Andrew J Davison, and Edward Johns. “Transferring End-to-End
Visuomotor Control from Simulation to Real World for a Multi-Stage Task”. In:
Conference on Robot Learning. 2017, pp. 334–343.

[43] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. “Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions”. In: The International journal of robotics research
34.7 (2015), pp. 883–921.

[44] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal
motion planning”. In: International Journal of Robotics Research 30.7 (2011),
pp. 846–894.

[45] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt.
“Deep variational bayes filters: Unsupervised learning of state space models from
raw data”. In: arXiv preprint arXiv:1605.06432 (2016).

[46] Oussama Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots”. In: Proceedings. 1985 IEEE International Conference on Robotics and
Automation. Vol. 2. IEEE. 1985, pp. 500–505.

[47] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015. url:
http://arxiv.org/abs/1412.6980.

[48] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. 2014.

[49] Diederik P Kingma and Max Welling. “An introduction to variational
autoencoders”. In: Foundations and Trends® in Machine Learning 12.4 (2019),
pp. 307–392.

[50] Yoram Koren and Johann Borenstein. “Potential field methods and their inherent
limitations for mobile robot navigation.” In: ICRA. Vol. 2. 1991, pp. 1398–1404.

[51] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. “Imitation learning
of positional and force skills demonstrated via kinesthetic teaching and haptic
input”. In: Advanced Robotics 25.5 (2011), pp. 581–603.

https://arxiv.org/abs/1807.10366
https://ieeexplore.ieee.org/document/8653875/
http://arxiv.org/abs/1412.6980

References 101

[52] Danica Kragic and Henrik I Christensen. “Survey on visual servoing for
manipulation”. In: Computational Vision and Active Perception Laboratory,
Fiskartorpsv 15 (2002), p. 2002.

[53] Oliver Kroemer, Scott Niekum, and George Konidaris. “A review of robot
learning for manipulation: Challenges, representations, and algorithms”. In: The
Journal of Machine Learning Research 22.1 (2021), pp. 1395–1476.

[54] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–1001.

[55] Vikash Kumar and Emanuel Todorov. “MuJoCo HAPTIX: A virtual reality
system for hand manipulation”. In: Humanoid Robots (Humanoids), 2015
IEEE-RAS 15th International Conference on. IEEE. 2015, pp. 657–663.

[56] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
scalable predictive uncertainty estimation using deep ensembles”. In: Advances in
neural information processing systems. 2017, pp. 6402–6413.

[57] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.
[58] Steven M Lavalle. Rapidly-Exploring Random Trees: A New Tool for Path

Planning. Tech. rep. Iowa State University, 1998.
[59] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and

Sergey Levine. “Stochastic Adversarial Video Prediction”. In: arXiv preprint
arXiv:1804.01523 (2018).

[60] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-end
training of deep visuomotor policies”. In: The Journal of Machine Learning
Research 17.1 (2016), pp. 1334–1373.

[61] Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and
Song-Chun Zhu. “Closed loop neural-symbolic learning via integrating neural
perception, grammar parsing, and symbolic reasoning”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 5884–5894.

[62] Kevin M Lynch and Frank C Park. Modern robotics. Cambridge University Press,
2017.

[63] Ezio Malis, Francois Chaumette, and Sylvie Boudet. “Positioning a
coarse-calibrated camera with respect to an unknown object by 2D 1/2 visual
servoing”. In: Proceedings. 1998 IEEE International Conference on Robotics and
Automation (Cat. No. 98CH36146). Vol. 2. IEEE. 1998, pp. 1352–1359.

[64] Alireza Mehrtash, William M Wells, Clare M Tempany, Purang Abolmaesumi,
and Tina Kapur. “Confidence calibration and predictive uncertainty estimation
for deep medical image segmentation”. In: IEEE transactions on medical imaging
39.12 (2020), pp. 3868–3878.

[65] Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu,
Dhruva Tirumala, Nicolas Heess, and Greg Wayne. “Hierarchical Visuomotor
Control of Humanoids”. In: International Conference on Learning Representations.
2018.

102 References

[66] Alexander L Mitchell, Martin Engelcke, Oiwi Parker Jones, David Surovik,
Siddhant Gangapurwala, Oliwier Melon, Ioannis Havoutis, and Ingmar Posner.
“First Steps: Latent-Space Control with Semantic Constraints for Quadruped
Locomotion”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2020), pp. 5343–5350.

[67] Edward F Moore. Sequential machines: Selected papers. Addison-Wesley Longman
Ltd., 1964.

[68] Suraj Nair and Chelsea Finn. “Hierarchical Foresight: Self-Supervised Learning of
Long-Horizon Tasks via Visual Subgoal Generation”. In: International Conference
on Learning Representations. 2019.

[69] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntak Lee, Xinyan Yan,
Evangelos Theodorou, and Byron Boots. “Agile Autonomous Driving using
End-to-End Deep Imitation Learning”. In: Robotics: science and systems. 2018.

[70] H Leo H de Penning, Artur S d’Avila Garcez, Luís C Lamb, and
John-Jules C Meyer. “A neural-symbolic cognitive agent for online learning and
reasoning”. In: Twenty-Second International Joint Conference on Artificial
Intelligence. 2011.

[71] L de Penning, AS d’Avila Garcez, Luís C Lamb, and JJ Meyer. “An integrated
neural-symbolic cognitive agent architecture for training and assessment in
simulators”. In: Proceedings of the 6th International Workshop on
Neural-Symbolic Learning and Reasoning, NeSy10, held at AAAI-2010. 2010.

[72] Carl Edward Rasmussen. “Gaussian processes in machine learning”. In: Summer
School on Machine Learning. Springer. 2003, pp. 63–71.

[73] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa.
“CHOMP: Gradient optimization techniques for efficient motion planning”. In:
2009 IEEE International Conference on Robotics and Automation. IEEE. 2009,
pp. 489–494.

[74] Nathan D Ratliff, Jan Issac, Daniel Kappler, Stan Birchfield, and Dieter Fox.
“Riemannian motion policies”. In: arXiv preprint arXiv:1801.02854 (2018).

[75] Siddharth Reddy, Anca D Dragan, and Sergey Levine. “SQIL: Imitation Learning
via Reinforcement Learning with Sparse Rewards”. In: International Conference
on Learning Representations. 2019.

[76] Douglas A Reynolds. “Gaussian mixture models.” In: Encyclopedia of biometrics
741.659-663 (2009).

[77] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic
Backpropagation and Approximate Inference in Deep Generative Models”. In:
International Conference on Machine Learning (ICML). PMLR. 2014,
pp. 1278–1286.

[78] Danilo Jimenez Rezende and Fabio Viola. “Taming VAEs”. In: arXiv preprint
arXiv:1810.00597 (2018).

[79] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings of
the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 627–635.

References 103

[80] Reuven Y Rubinstein and Dirk P Kroese. The Cross Entropy Method: A Unified
Approach To Combinatorial Optimization, Monte-Carlo Simulation (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2004.

[81] Lars Ruthotto and Eldad Haber. “An introduction to deep generative modeling”.
In: GAMM-Mitteilungen 44.2 (2021), e202100008.

[82] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler.
“Neuro-symbolic artificial intelligence: Current trends”. In: arXiv preprint
arXiv:2105.05330 (2021).

[83] Sooyoon Shin, Trinity B Crapse, J Patrick Mayo, and Marc A Sommer.
“Visuomotor Integration”. In: Encyclopedia of Neuroscience (2009), pp. 4354–4359.

[84] Rahul Shome, Wei N Tang, Changkyu Song, Chaitanya Mitash, Hristiyan Kourtev,
Jingjin Yu, Abdeslam Boularias, and Kostas E Bekris. “Towards robust product
packing with a minimalistic end-effector”. In: 2019 International Conference on
Robotics and Automation (ICRA). IEEE. 2019, pp. 9007–9013.

[85] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
“Universal planning networks: Learning generalizable representations for
visuomotor control”. In: International Conference on Machine Learning. PMLR.
2018, pp. 4732–4741.

[86] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[87] Ioan A Şucan and Lydia E Kavraki. “Kinodynamic motion planning by
interior-exterior cell exploration”. In: Algorithmic Foundation of Robotics VIII.
Springer, 2009, pp. 449–464.

[88] Ioan A Şucan, Mark Moll, and Lydia E Kavraki. “The open motion planning
library”. In: IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–82.

[89] Faraz Torabi, Garrett Warnell, and Peter Stone. “Behavioral cloning from
observation”. In: Proceedings of the 27th International Joint Conference on
Artificial Intelligence. 2018, pp. 4950–4957.

[90] Ulrich Viereck, Andreas Pas, Kate Saenko, and Robert Platt. “Learning a
visuomotor controller for real world robotic grasping using simulated depth
images”. In: Conference on Robot Learning. 2017, pp. 291–300.

[91] Jack Wang, Aaron Hertzmann, and David J Fleet. “Gaussian process dynamical
models”. In: Advances in neural information processing systems 18 (2005).

[92] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller.
“Embed to control: A locally linear latent dynamics model for control from raw
images”. In: Advances in neural information processing systems. 2015,
pp. 2746–2754.

[93] William J Wilson, CC Williams Hulls, and Graham S Bell. “Relative end-effector
control using cartesian position based visual servoing”. In: IEEE Transactions on
Robotics and Automation 12.5 (1996), pp. 684–696.

104 References

[94] Yizhe Wu, Oiwi Parker Jones, Martin Engelcke, and Ingmar Posner. “APEX:
Unsupervised, object-centric scene segmentation and tracking for robot
manipulation”. In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2021, pp. 3375–3382.

[95] Yizhe Wu, Sudhanshu Kasewa, Oliver Groth, Sasha Salter, Li Sun, Oiwi Parker
Jones, and Ingmar Posner. “Imagine That! Leveraging Emergent Affordances for
3D Tool Synthesis”. In: arXiv preprint arXiv:1909.13561 (2020).

[96] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and
Masashi Sugiyama. “Imitation learning from imperfect demonstration”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 6818–6827.

[97] Patrick Wunsch and Gerd Hirzinger. “Real-time visual tracking of 3D objects
with dynamic handling of occlusion”. In: Proceedings of International Conference
on Robotics and Automation. Vol. 4. IEEE. 1997, pp. 2868–2873.

[98] Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. “Improvisation
through physical understanding: Using novel objects as tools with visual
foresight”. In: arXiv preprint arXiv:1904.05538 (2019).

[99] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and
Josh Tenenbaum. “Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding”. In: Advances in neural information processing systems
31 (2018).

[100] Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer. “Tactile sensing for
dexterous in-hand manipulation in robotics—A review”. In: Sensors and
Actuators A: physical 167.2 (2011), pp. 171–187.

[101] Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea Finn. “Unsupervised
Visuomotor Control through Distributional Planning Networks”. In: Proceedings
of Robotics: Science and Systems. Freiburg im Breisgau, Germany, June 2019.

[102] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R Hogan,
Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, et al.
“Robotic pick-and-place of novel objects in clutter with multi-affordance grasping
and cross-domain image matching”. In: The International Journal of Robotics
Research 41.7 (2022), pp. 690–705.

[103] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg,
and Pieter Abbeel. “Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation”. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 5628–5635.

[104] Shengjia Zhao, Jiaming Song, and Stefano Ermon. “InfoVAE: Information
Maximizing Variational Autoencoders”. In: CoRR abs/1706.02262 (2017). arXiv:
1706.02262. url: http://arxiv.org/abs/1706.02262.

[105] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi,
Saran Tunyasuvunakool, János Kramár, Raia Hadsell, Nando de Freitas, et al.
“Reinforcement and Imitation Learning for Diverse Visuomotor Skills”. In:
Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania, June
2018.

https://arxiv.org/abs/1706.02262
http://arxiv.org/abs/1706.02262

	Acronyms
	Introduction
	Motivation
	Guiding Questions
	Thesis Outline
	Visuomotor Failure Recovery using Policy Uncertainty Prediction
	Versatile Visuomotor Skill Primitives via Dynamic Representations
	Motion Planning Through Latent Space with Primitive Shapes
	Generalisation of Motion Planning from State-Based Observations to Complex Scenes

	Publications

	Background
	Robot Learning for Manipulation
	Object and Environment Representations
	Transition Models
	Skill Policies
	Characterising Skills by Preconditions and Effects
	Compositional and Hierarchical Task Structures

	Related Work
	Visuomotor Control for Robot Manipulation
	Latent Space Planning for Robot Manipulation

	Preliminaries
	End-to-End Visuomotor Control
	Uncertainty Estimation in Deep Learning
	Types of Uncertainty
	Bayesian Modelling
	Variational Inference
	Bayesian Neural Networks

	Deep Generative Modelling

	Introspective Visuomotor Control: Exploiting Uncertainty in Deep Visuomotor Control for Failure Recovery
	Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill Primitives
	GEECO Hyperparameters
	GEECO Ablation Details
	E2EVMC Baseline
	Visual Foresight Baseline
	TecNet Baseline

	Reaching Through Latent Space: From Joint Statistics to Path Planning in Manipulation
	Training Details
	LSPP Hyperparameters
	Choice of Hyperparameters

	Planning Details
	Modification of GECO
	Planning Hyperparameters

	Choice of Baselines
	Analysis on Latent Space Representation

	Leveraging Scene Embeddings for Gradient-Based Motion Planning in Latent Space
	Discussion
	Key Contributions
	Limitations
	Future Work

	References

