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Can we improve the nowcasting of space weather events by having Al onboard a spacecraft? TRILLIUM =020 | 38T
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CHALLENGE AND OPPORTUNITY OUTCOMES

. Extracting the direction and density of Coronal Mass Ejections (CMEs) is crucial for

predicting CME impacts but challenging from 2D observations. The upcoming ESA VIGIL mission will

observations

provide a much needed extra viewpoint to enable triangulation and 3D reconstruction - but can

combining onboard and ground based processing save valuable time when a CME is approaching?

Improve CME nowcasting with ML
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CME reconstruction on Earth (using NeRFs). &/ Q. = (
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Automatic 3D CME reconstruction for

better CME reaction time on Earth.
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CME-aware compression performed onboard; downlinked observations used for 3D reconstruction
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and CME parameter estimation using Physics-informed Neural Radiance Field (PINNeRF) on ground.
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1. Onboard classifier activates higher observation 1. For each viewpoint and each pixel in the image, sample points along the line-of-sight. 4. Establish physics constraints.

cadence if a strong CME is detected
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Velocity loss: Ly =

2. “Task-aware” compression of classifier- A 1 | |
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variational autoencoder (VQ-VAE) g Figure 3: Coronagraphic image (2D)  Figure 4: Velocity and density field snapshot of a simulated CME (reconstructed from observations
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and physics constraints.

3. For each pixel, integrate the
intensity from Thomson scattering
to reconstruct the pixel value
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Ground aut Pl | e Data fusion: make use of different types of e Include more sophisticated architectures and

data (e.g. EUV) training schemes

® |nvestigate the tolerance of noise level in (e.g., neural compression)
() Training on coronagraph data from simulations and simulation data for model training to bridge e Deploy on the VIGIL satellite
proxy observation data from the STEREO mission. the gap from simulated to real observations
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